

2.2.0 | October 1, 2025

Handbook

RE@Agile

Practitioner | Specialist

Peter Hruschka, Kim Lauenroth,

Markus Meuten, Gareth Rogers,

Stefan Gärtner, Hans-Jörg Steffe

RE@Agile | Handbook | © IREB 126 | 2

Terms of use

All contents of this document, especially texts, photographs, graphics, diagrams, tables,

definitions and templates, are protected by copyright. Copyright © 2025 for this handbook

is with the authors. All (co-)authors of this document have transferred the exclusive right of

use to IREB e.V.

Any use of the handbook or its components, in particular copying, distribution (publication),

translation, or reproduction, requires the prior consent of IREB e.V.

Any individual is entitled to use the contents of the handbook within the scope of the acts of

use permitted by copyright law, in particular to quote these correctly in accordance with

recognized academic rules.

Educational institutions are entitled to use the contents of the handbook for teaching

purposes under correct reference to the work.

Use for advertising purposes is only permitted with the prior consent of IREB e.V.

Acknowledgements

This handbook was initially created in 2018 by Bernd Aschauer, Peter Hruschka, Kim

Lauenroth, Markus Meuten, Gareth Rogers.

Our thanks to Rainer Grau for his intensive reviews of the RE@Agile syllabus, to all reviewers

of this document as well as Stefan Sturm, Sibylle Becker and Ruth Rossi for their

encouragement and support. Review comments were provided by Sacha Reis,, Sven van der

Zee, Johannes Bergsmann, and Jesko Schneider. Translation from English into German by

Tanja Scheuermann. German Review by Thomas Emmerich, Stefan Gärtner, and Hans-Jörg

Steffe.

The English version was approved for release on March 18, 2025 by the IREB Council upon

recommendation of Xavier Franch.

We thank everybody for their involvement.

Copyright © 2017-2025 for this handbook is with the authors listed above. The rights have

been transferred to the IREB International Requirements Engineering Board e.V.

RE@Agile | Handbook | © IREB 3 | 126

Contents

1 What is RE@Agile ... 9

1.1 History of Requirements Engineering and agility 9

1.2 Learning from each other .. 13

1.3 RE@Agile – a definition ... 15

2 A clean project start 18

2.1 Visions and goals ... 18

2.1.1 Fundamentals .. 18

2.1.2 Techniques for vision/goal specification 20

2.1.3 Changing vision and/or goals .. 26

2.2 Specifying the system boundary 26

2.2.1 Documentation of the system boundary .. 29

2.2.2 The inevitability of a changing scope 34

2.3 Stakeholder identification and management 35

2.3.1 Fundamentals .. 35

2.3.2 Identification of stakeholders .. 35

2.3.3 Management of stakeholders .. 38

2.3.4 Sources for requirements beyond stakeholder 38

2.4 The dependencies between visions/goals, stakeholders and the system

boundary .. 39

2.5 Case study and exercises .. 40

3 Handling functional requirements 42

3.1 Different levels of requirements granularity 43

3.2 Communicating and documenting on different levels 45

3.3 Working with user stories and backlog items 49

3.3.1 A template for user stories: user story template 52

3.3.2 The 3C model .. 53

3.3.3 INVEST: criteria for "good" backlog items 54

3.3.4 Supplementing backlog items with other requirements artifacts 54

3.4 Splitting and grouping techniques 55

RE@Agile | Handbook | © IREB 4 | 126

3.5 Knowing when to stop .. 57

3.6 Project and product documentation of requirements 60

3.7 Summary ... 62

4 Handling quality requirements and constraints 63

4.1 Understanding the importance of quality requirements and constraints

 .. 64

4.2 Adding precision to quality requirements 67

4.3 Quality requirements and backlog 72

4.4 Making constraints explicit 73

4.5 Summary ... 76

5 Prioritizing and estimating requirements 78

5.1 Determination of business value 79

5.2 Business value, risks, and dependencies 81

5.3 Expressing priorities and ordering the backlog 82

5.4 Estimation of backlog items 86

5.5 Choosing a development strategy 92

5.6 Summary ... 95

6 Scaling RE@Agile .. 97

6.1 Scaling requirements and teams 97

6.1.1 Organizing large scale requirements ... 99

6.1.2 Organizing teams ... 101

6.1.3 Organizing lifecycles/iterations ... 104

6.2 Criteria for structuring requirements and teams in the large 104

6.2.1 Product-focused backlog .. 104

6.2.2 Self-organizing teams and collaborative decision-making 106

6.2.3 Understanding feature-based requirements splitting 106

6.2.4 Considerations when feature-based requirements splitting is not possible ... 108

6.2.5 Telecoms company example ... 109

RE@Agile | Handbook | © IREB 5 | 126

6.3 Roadmaps and large scale planning 113

6.3.1 Representing roadmaps .. 114

6.3.2 Synchronizing teams with roadmaps .. 117

6.3.3 Developing roadmaps .. 118

6.3.4 Validating roadmaps .. 120

6.4 Product validation ... 120

List of abbreviations 122

References .. 123

RE@Agile | Handbook | © IREB 6 | 126

Foreword

This handbook complements the syllabus of the CPRE module RE@Agile.

This handbook is intended for training providers who want to offer seminars or training on

RE@Agile Practitioner and/or Specialist according to the IREB standard. It is also aimed at

training participants and interested parties who want to get a detailed insight into the

content of this module. It can also be used when applying Requirements Engineering

methods in an agile environment according to the IREB standard.

This handbook is not a substitute for training on the topic. The handbook represents a link

between the Syllabus (which lists and explains the learning objectives of the module) and the

broad range of literature that has been published on the topic.

The contents of this handbook, together with references to more detailed literature, support

training providers in preparing training participants for the certification exam. This handbook

provides training participants and interested parties an opportunity to deepen their

knowledge of Requirements Engineering in an agile environment and to supplement the

detailed content based on the literature recommendations. In addition, this handbook can be

used to refresh existing knowledge about the various topics of RE@Agile, for instance after

having received the RE@Agile Practitioner or the RE@Agile Specialist certificate.

For the definitions of terms, we refer the reader to the IREB CPRE Requirements Engineering

glossary [Glin2024], which is not only a comprehensive glossary of Requirements

Engineering terminology, but also defines many terms from the field of agility. For specific

agility terms, the reader may consult the current Scrum Guide [ScSu2020].

Suggestions for improvements and corrections are always welcome!

E-mail contact: info@ireb.org

We hope that you enjoy studying this handbook and that you will successfully pass the

certification exam for the IREB Certified Professional for Requirements Engineering Module

RE@Agile Practitioner or Specialist.

More information on the IREB Certified Professional for Requirements Engineering module

RE@Agile can be found at: http://www.ireb.org.

mailto:info@ireb.org
http://www.ireb.org/

RE@Agile | Handbook | © IREB 7 | 126

Version History

Version Date Comment Author

1.0.0 October 10, 2018 Initial Version Bernd Aschauer,
Peter Hruschka,
Kim Lauenroth,
Markus Meuten
and Gareth Rog-
ers

1.0.1 September 11, 2019 Minor improvements (typos, for-
matting, a few inconsistencies re-
moved) in the context of the trans-
lation to German.

Markus Meuten
Hans-Jörg
Steffe ,Ruth
Rossi

1.0.2 December 17, 2019 Consistent usage of the term re-
finement meeting and product
backlog refinement.

Hans-Jörg
Steffe

2.0.0 July 1, 2022 Complete reorganization of the
chapter 6; Consistent design of the
Figures; Bug fixing in chapter 1-5
(e.g. replaced “minimal” with “mini-
mum” in minimum viable product
and minimum marketable product,
replaced “development team” with
“developers”); inclusion of the Ad-
vanced Level split in Practitioner
and Specialist

Peter Hruschka,
Kim Lauenroth,
Markus Meuten,
Gareth Rogers,
Stefan Gärtner,
Hans-Jörg
Steffe

2.0.1 April 18, 2023 Minor bugfixes in grammar and ty-
pos

Hans-Jörg
Steffe

2.1.0 May 1, 2024 New Corporate Design imple-
mented. Term “Advanced Level”
eliminated.

Ruth Rossi

2.2.0 October 1, 2025 All chapters:

▪ Minor error fixes,

▪ Update of the references,

▪ Standardization of terms:

product backlog, backlog item,

user story, story,

Chapter 1:

▪ Update of the definition of

Requirements Engineering

according to IREB

Chapter 3:

▪ Clear definition of the

requirements hierarchy,

NEW: Different uses of the term

user story, backlog items as a

term for entries in the product

Hans-Jörg
Steffe,
Markus Meuten,
Gareth Rogers

RE@Agile | Handbook | © IREB 8 | 126

backlog, user story template as

a term,

▪ Changes to the order of the

sub-chapters

NEW: clearer definition of when

backlog items should be

detailed

Chapter 4:

▪ NEW: Detailing where quality

requirements and constraints

should be documented

▪ NEW: Differentiation: quality

requirements versus

acceptance criteria

Chapter 5

▪ Revision of the text in Chapter

5.3 and 5.4, NEW: Introduction

of the term Magic Estimation

Chapter 6:

▪ Error correction to the Scrum

definition for self-organizing ->

self-managing

▪ Minor adaptations to the text

RE@Agile | Handbook | © IREB 9 | 126

1 What is RE@Agile

Good Requirements Engineering is a recognized success factor for product or system

development, regardless of the development methodology applied.

In this chapter you will get an understanding of the background and history of Requirements

Engineering and of the background and history of agile approaches (chapter 1.1). You will

learn why sometimes these two disciplines are considered to be incompatible – which is a

popular misconception. You will learn that – despite their history – techniques and methods

from the Requirements Engineering discipline are being used (without a clear reference to its

origin) in specific development approaches (like Waterfall and Scrum). You will also learn that

agile approaches (like Scrum, Lean Development and Kanban) need good requirements

practices to deliver successful products and systems.

In chapter 1.2 we will discuss the strengths and weaknesses of Requirements Engineering

methods and of agile approaches. While Requirements Engineering emphasizes the

importance of eliciting, understanding and documenting key stakeholders’ requirements in

order not to build the wrong product or system, most agile approaches emphasize the

importance of trustful cooperation among the stakeholders. In agile, frequent feedback

loops based on visible results are used to avoid wrong assumptions being made or periods of

misunderstanding lasting too long.

IREB developed the advanced module RE@Agile to combine the strengths of both

disciplines. As you can guess: the goals of Requirements Engineering and agile approaches

are NOT in conflict with each other. Rather, they complement each other when the two

methods are used correctly.

The final chapter 1.3 introduces IREB’s definition of RE@Agile. In a nutshell you will learn how

your development projects can benefit from this integrated approach.

1.1 History of Requirements Engineering and agility

Based on their respective histories, Requirements Engineering and agile approaches are

often considered separately rather than together. Let us consider some key milestones in

these histories to better understand how this situation arose. These milestones are captured

in overview in Figure 1. (Note that they were chosen by the authors of this handbook to

emphasize important sources for this module. We do not claim to have captured the

complete history of development methods).

RE@Agile | Handbook | © IREB 10 | 126

In the late 1970s the term “software crisis” resounded throughout the IT-community. The

most important complaint: Product development is a complex process and often the

products do not satisfy the users. The answer of scientists and methodologists was the

waterfall model (originally suggested by Winston Royce, but made popular by Barry Boehm).

One of its remedies for the software crisis was to introduce a “Requirements Phase” before

designing, building and testing systems. Its goal was to reach agreement among important

stakeholders on what the product was intended to do before building it.

Requirements specifications at that time were mostly documents with natural language.

Around the same time (mid to end 1970s) many suggestions were made to use graphical

models in addition to text with the aim to improve the precision of requirements and to avoid

inconsistencies.

In 1976 Peter Chen suggested Entity-Relationship models to capture business relevant data.

In 1977/78 Douglas Ross and Tom DeMarco introduced graphical, dataflow-based models

called Structured Analysis for capturing the functionality of systems.

In the 1980s it became apparent that the idea of a linear “waterfall” development model with

a requirements phase at the beginning frequently did not work as intended. The idea of an

iterative and incremental development of systems and of working with prototypes arose,

which later became core constituents of agility. Barry Boehm’s spiral model of 1988

introduced risk analysis and early validation into Requirements Engineering..

From a method and notation point of view, 1992 was an important milestone for

Requirements Engineering: Ivar Jacobson proposed a “Use Case Driven Approach”. He

focused on “actors” (or users) in the context of the system, and of thinking end-to-end

across the whole product. These ideas were not new.

McMenamin/Palmer (in 1984) and Hammer/Champy, in their “Business Process

Reengineering” Methodology, also emphasized this sort of process thinking. But the notation

of Ivar Jacobson – simple stick figures and ellipses, supported by natural language

descriptions of these use cases – became very popular.

Another important milestone for Requirements Engineering was the Unified Process of Ivar

Jacobson – made popular as the “Rational Unified Process” (RUP). RUP recognizes

Requirements Engineering as a “discipline” instead of a “phase”. This discipline spans all of

the phases (with varying degrees of emphasis).

All modern process models have adopted this distinction between disciplines (like business

analysis, requirements, design, implementation, testing) and phases (like inception,

elaboration, construction, transition – in the RUP-terminology). The latter allow for

manageable milestones, while the former ensure that appropriate techniques and practices

are established for ongoing work.

The international standardization of UML (Unified Modeling Language) in 1997 by the OMG

(Object Management Group) helped to make requirements specifications using use case

models, activity diagrams, state charts and so on more popular, especially since many tools

supported these notations.

RE@Agile | Handbook | © IREB 11 | 126

Thinking in terms of end-to-end business processes was further enhanced by the

standardization of the BPMN (Business Process Model and Notation). While Ivar Jacobson’s

use cases were often misinterpreted to be “just the IT part of the business processes”, BPMN

models are closer to the “business”. This addressed one important RE-issue: the alignment

of business and IT.

Another important aspect of Requirements Engineering has been discussed as early as 1986

with HP’s introduction of FURPS: the importance of quality requirements. FURPS

(Functionality, Usability, Reliability, Performance and Supportability) was one of the first

approaches to emphasize quality aspects in addition to functionality.

This was refined by the ISO/IEC standard 9126, which established many additional categories

of qualities to be achieved by systems. The latest revision of this standard is the ISO/IEC

standard 25010 (also known as SQuaRE – Systems and Software Quality Requirements and

Evaluation), in which the importance of security in modern systems is emphasized.

Figure 1: Selected milestones in RE and Agile

Some key ideas of agile approaches were published long before the Agile Manifesto

appeared in 2001.

RE@Agile | Handbook | © IREB 12 | 126

Tom DeMarco and Tim Lister coined the term “Peopleware” in 1987 to emphasize the

importance of human cooperation and teams.

Toyota published success stories involving Kanban and Lean Manufacturing (or Lean

Production) in the late 1980s. Both concepts (Kanban and Lean) are core ideas in today’s

agile methods.

Scrum, a “framework for developing and sustaining complex products”, was first published

by Jeff Sutherland and Ken Schwaber in 1995. It introduces the role and accountability of a

“product owner”, accountable for the product’s success within an organization. The product

owner1 sets the priorities of requirements (often called epics, features or stories). Partly due

to its simplicity (3 roles/responsibilities, 3 artifacts, 5 meetings), Scrum became very popular

around the world.

In 2001 a group of 17 individuals representing popular approaches like Extreme

Programming, Scrum, DSDM, Adaptive Software Development, Crystal, Feature-Driven

Development and Pragmatic Programming met in Utah and agreed on a “manifesto”. The

Agile Manifesto, as it became known, shifted the emphasis of system development from

contracts, documents and long-term planning and processes to cooperation, openness to

change and feedback based on frequent releases.

In the same year Ron Jeffries – one of the signees of the Agile Manifesto– published the 3C

model (Card, Conversation, Confirmation), to distinguish “social“ user stories from

“documentary“ requirements practices such as use cases.

A few years later Mike Cohn suggested a format for these cards: user stories. User stories

emphasize three important issues: Who wants what, and why ("As a <role/person> I want

<goal/desire> so that <benefit>").

Since Scrum was mainly developed for smaller teams (up to ten people), more and more

scaling frameworks (for example SAFe, LeSS, DAD…) were published from 2010 onwards,

suggesting ways of cooperating in larger or distributed teams.

Dean Leffingwell [Leff2010] coined the term “Agile Software Requirements” by publishing a

book in 2011 with this title, which lead to the term “Agile Requirements Engineering”.

Although this term became popular for performing Requirements Engineering tasks

according to the principles of the Agile Manifesto, there is a danger that it may lead to the

misunderstanding that there are two ways of Requirements Engineering: classical

Requirements Engineering and Agile Requirements Engineering. IREB’s view is that there is

only good or bad Requirements Engineering - in a non-agile or agile world. Therefore, we call

the IREB approach RE@Agile.

1 For the sake of brevity, we will use the name “product owner” in this handbook, whenever we refer to a person responsible for

managing the requirements. For a definition see the glossary.

RE@Agile | Handbook | © IREB 13 | 126

1.2 Learning from each other

Agile and Requirements Engineering are two disciplines with different origins and distinct

goals that can nevertheless learn a lot from each another.

Let us start with some key Requirements Engineering ideas and see how they can benefit

from the agile mindset. After that we will look at some basic agile principles and discuss how

Requirements Engineering techniques can further improve them.

IREB defines Requirements Engineering as a systematic and disciplined approach to the

specification and management of requirements with the goal of understanding the

stakeholders desires and needs and minimizing the risk of delivering a system that doens not

meet the desires and needs.

In order to understand the wishes and needs of the stakeholders, the relevant requirements

must be determined before the solution is addressed. Agility is very explicit about how

“relevant” should be interpreted: just in time! Not all requirements are relevant at the

beginning of an endeavor. A vision statement or a set of goals are sufficient to get started.

Before parts of the solution are developed a thorough understanding of this subset of

requirements is necessary. Others – that are not so urgent for the business – can be left

more vague and can be refined later.

Regardless of whether the classic or agile approach is chosen, a consensus should be

reached among the stakeholders. Stakeholders should discuss the requirements intensively

until everyone understands their perspective. Another agile mechanism to achieve

consensus among the stakeholders, is quick feedback through demonstrable product

increments. In many environments seeing a (partial) product increment and being able to use

it, is more successful in finding open issues than creating large volumes of precise

documents that are often not read.

A traditional approach often stipulates that the wishes and needs of stakeholders must be

documented. However, agility warns us that we should not produce documents for the sake

of producing documents. Documenting requirements (in an adequate form for the

stakeholders) should either (1) support the process of achieving consensus or (2) satisfy

externally imposed constraints (for instance legal constraints or traceability requirements) or

(3) make life easier for defining requirements for the next release without being forced to

start from scratch.

Finally, let's look at the part of the definition of Requirements Engineering to managing

requirements, to minimize the risk of delivering a system that does not meet the

stakeholders’ desires and needs. To achieve this, agility suggests constantly checking the

priority and estimates of backlog items (the requirements).

The principles of agility help to refocus Requirements Engineering in terms of its efficiency,

flexibility and collaborative nature. Conversely, there are many insights of Requirements

Engineering from which agile approaches can also benefit.

Agility strongly encourages trustful collaboration and communication among all relevant

stakeholders. In many agile methods this usually means frequent and open verbal

communication between clients and users on one side (those that have needs or

RE@Agile | Handbook | © IREB 14 | 126

requirements) and developers on the other (those that can provide solutions to the needs

and requirements).

While trustful communication is an excellent way to achieve a joint understanding of

requirements, this is by far not the only way to elicit requirements. Requirements Engineering

has developed an extensive body of knowledge on elicitation techniques (for example

[RoRo2012]) suitable for use in different environments and under particular constraints.

For example: creativity techniques, such as brainstorming, help to create product backlog

items quickly in innovative projects; product archeology can create quicker results when

working on new versions of existing products; questionnaires may help to get feedback quickly

from a large number of widely dispersed stakeholders that you would never get into one

meeting room.

Agile product owners can benefit greatly from having a range of such elicitation techniques

at their disposal and picking a suitable subset that helps to fill the product backlog more

quickly than “just talking”.

By focusing on trustful communication agile approaches often downplay the importance of

precise documentation. User story approaches, in particular, emphasize that the cards to

denote user stories are principally a reminder of the discussion, and not a replacement for

exact requirements (also see chapter 3.3). We agree that plain natural language (in contrast

to more formal requirements notations) is often an adequate way to understand each other.

However natural language is sometimes not precise enough to avoid misinterpretation.

Many other requirements notations have been developed over the last decades – including

many graphical notations – that allow stakeholders to overcome the lack of precision of

natural language. Some business processes might be more easily discussed using activity

diagrams, data-flow diagrams or Business Process Model and Notation (BPMN) than by

writing cards for the steps of the process. Some objects to be dealt with are sometimes

more easily sketched using information models, and some state-driven systems could

benefit from state models to clarify which activities should be performed in which state.

Once again, product owners and developers should know such notations – not for the sake

of applying a formalism, but rather for shortening discussions.

Another agile credo is delivering working software frequently, that is working iteratively and

creating a series of product increments. It does not, however, make sense to start with

iterative development if the team is not aligned on a vision or a set of goals. For a single

Scrum product owner in full command of a product it may be easy to have a vision or set of

goals. If, however, the product owner has to coordinate with a number of “important”

stakeholders, then stakeholder analysis, goal alignment and scope definition should precede

any detailed requirements work. These activities are included within the idea of a “clean

project start” introduced in chapter 2.

Summarizing the considerations in this chapter, it can be said that agility helps us to create a

culture for successful product development. Requirements Engineering makes them more

flexible and efficient, and it means that more importance is attached to collaboration. From

RE@Agile | Handbook | © IREB 15 | 126

a requirements point of view the cornerstones of agility are trustful cooperation of all

stakeholders and striving for short term incremental results. Techniques such as capturing

user stories on story cards work well. However, there are many other techniques for

requirements elicitation and validation developed over decades of Requirements

Engineering research that can help product owners and developers to be even more

productive - if used correctly and without formalistic exaggeration, of course.

In the RE@Agile Primer [Prim2017] we concluded: “The most important value is shared by

Requirements Engineering and agile, and that is to make the end user of the product happy

because the solution fits their needs or cures their greatest pains.”

In this module we will go into detail to show how ideas from both worlds can be used together

to achieve this goal. In the following definition of RE@Agile we first find it helpful to set out

our own guiding principles for the rest of this handbook.

1.3 RE@Agile – a definition

RE@Agile is a cooperative, iterative and incremental approach with four goals:

1. Knowing the relevant requirements at an appropriate level of detail (at any time

during system development)

2. Achieving sufficient agreement about the requirements among the relevant

stakeholders

3. Capturing (and documenting) the requirements according to the constraints of the

organization

4. Performing all requirements-related activities according to the principles of the Agile

Manifesto

As mentioned above we will use the Scrum terminology of a product owner as the role or

accountability that is responsible for the cooperative approach and therefore as the role

responsible for good Requirements Engineering2.

Let us explore the key ideas of this definition in detail:

1. RE@Agile is a cooperative approach:

“Cooperative” emphasizes the idea of agility in the form of intensive interaction with

stakeholders, which is characterized by regular inspections of the product status and

the resulting feedback. This enables the continuous sharpening and clarification of

requirements resulting from continuous learning.

2. RE@Agile is an iterative process:

This suggests the idea of “just in time”-requirements. Requirements do not have to be

complete before starting technical design and implementation. Stakeholders can

2 Generally speaking, even if the product owner is responsible for Requirements Engineering, they can still get support for this

activity. However, regardless of whether there are people who support the requirements elicitation, requirements structuring

or requirements modeling, the responsibility remains with the product owner.

RE@Agile | Handbook | © IREB 16 | 126

iteratively define (and refine) those requirements that should be implemented soon at

the appropriate level of detail.

3. RE@Agile is an incremental process:

Implementation of those requirements that are considered to deliver highest business

value or reduce the highest risks form the first increment. Early increments strive to

create a minimum viable product (MVP) or a minimum marketable product (MMP).

From then on, the next increments can be added to that product, constantly picking

the ones that promise the highest business value. In this way, the business value of

the resulting product is constantly increased.

The first goal (“relevant requirements known at the appropriate level of detail”) again refers

to the iterative approach: “relevant” are those requirements that should be implemented

soon. And those have to be understood very precisely (including their acceptance criteria) –

especially by the developers.

They have to conform to the “Definition of Ready” (DoR). Other requirements – that are not

highest priority yet – can be kept at a higher abstraction level – only to be detailed further as

soon as they become more important.

The prerequisite for the second goal (“sufficient agreement among relevant stakeholders”)

is to know all stakeholders and their relevance for the system being developed.

The person responsible for requirements (usually the product owner) has to negotiate the

requirements with those relevant stakeholders to determine the order of their

implementation.

Agile approaches value intensive and ongoing communication about requirements over

communication about documentation. Nevertheless, the third goal emphasizes the

importance of documentation at an appropriate level of detail (which differs from situation

to situation). Organizations may have to keep documentation about requirements (for

instance for legal purposes, traceability or maintenance). In these cases, agile approaches

have to ensure that the appropriate documentation was produced. However, it does not

have to be created upfront. It might save time and effort to create the documentation in

parallel to the implementation, or even after the implementation. It might also be useful to

create some artifacts like data models, activity models or state models as temporary

documentation to support the discussion about requirements.

Requirements management summarizes all activities to be done once you have existing

requirements and requirements related artifacts. In agile most requirements management

activities are included in the constant refinement process of the backlog items. But classical

requirement management also includes attribution of requirements, version management,

configuration management as well as traceability among requirements and traceability to

other development artifacts.

RE@Agile suggests to minimize these efforts or to balance efforts and benefits:

▪ Extensive version management can be replaced by quick iterations leading to

product increments (for instance the change-history of requirements since they were

first encountered is less interesting than their current valid state);

RE@Agile | Handbook | © IREB 17 | 126

▪ Configuration management (base lining) is included in the iterative determination of

sprint backlogs, i.e., grouping those requirements that currently promises the highest

business value.

Therefore, some of the time (and paper-) consuming requirements management activities

of non-agile approaches are substituted by activities based on agile principles. And some

others are well supported by tools that help to automatically keep track of relationships

between requirements and about history without additional human effort.

The next chapters of this handbook will discuss various aspects of RE@Agile in more detail.

Chapter 2 will discuss the prerequisites for successful system development: balancing vision

and/or goals, stakeholders and scope of the system.

Chapter 3 and 4 will discuss handling of functional requirements, quality requirements and

constraints on different levels of granularity.

Chapter 5 will discuss the process of estimating, ordering and prioritizing requirements to

determine the sequence of increments.

The chapters 2 through 5 mainly emphasize handling requirements by a group of developers

(of 3 – 9 persons).

Chapter 6 discusses scaling Requirements Engineering for larger, potentially distributed

teams, including overall product planning and road mapping.

RE@Agile | Handbook | © IREB 18 | 126

2 A clean project start

Preparing the workshop before starting a major project is an established tradition in many

crafts. This includes, for example, preparing and gathering the necessary material, cleaning

and sorting the tools, removing waste from the previous project, and agreeing on the

cornerstones of the upcoming project. Because of the immaterial nature of software, such

behavior may appear inadequate or old-fashioned. The opposite is in fact true.

Most of the work in software development is mental work or plain thinking. This means that

most of the work is not visible from the outside compared to traditional crafts. In a workshop

or a construction site, mistakes are often visible to others and can therefore be corrected

immediately. A mistake in thinking can only be noticed if the output of the thinking is visible in

some form. The output may then be recognized by a person or system as wrong, leading to

the understanding or identification of the mistake in the thinking.

Agile approaches are often not aware of this problem. People think that direct

communication and fast feedback cycles are sufficient. Although they are really helpful and

valuable, they are not sufficient.

For example: If the shared big picture and other visible artifacts are missing when the

development starts, then direct communication and fast feedback cycles cannot prevent

multiple reworks.

The idea of a clean project start presented in this chapter describes important prerequisites

that enable successful iterative, incremental system development.

You will learn that a Clean Project Start should consist of three activities producing three

tangible results that can be used to steer iterative work:

▪ Definition of the vision and/or goals of the system

▪ Identification of the currently known scope of the system and the system boundary

▪ Identification of relevant stakeholders and other important requirements sources

You will learn details for each activity and their corresponding techniques in the next

chapters. At the end of this chapter, we will present the case study iLearnRE including

exercises to practice the clean project start. The case study will be used as an ongoing

example for additional exercises in the following chapters.

2.1 Visions and goals

2.1.1 Fundamentals

The product vision and/or the goals of the product are of the utmost importance of every

development activity. They set the overall direction for development and guide all other

activities. Vision and/or goals are either triggered by problems or unsatisfactory

circumstances encountered in the current environment, or by changes in the environment

RE@Agile | Handbook | © IREB 19 | 126

that force us to react (for instance the introduction of new legislation), or by innovative ideas

that promise more or better business.

We use both terms –vision and goals– interchangeably. Agile methods often prefer to talk

about vision while Requirements Engineering approaches usually use the word “goals”. Both

can be considered as the most abstract formulation of what should be achieved by the

system. All team members and all relevant stakeholders should be aware of the defined

vision and goals to understand what the team is striving for.

The product owner is responsible for the formulation of the vision and/or goals. The product

owner is also responsible for explaining the details to team members. Being responsible does

not mean that the product owner must define the vision or goals alone. Typically, the

product owner discusses the vision and/or goals with relevant stakeholders and collects their

input and feedback.

A common pitfall when defining a vision and/or goals is choosing the wrong perspective,

meaning formulating a vision and/or goals that say something about the system under

development or part of it. An example is the following statement:

“Create a website for buying and reading electronic books and audio books.”

This vision describes a system (a website) for buying and reading electronic books.

Depending on the circumstances, developing such a system may be a good idea or not.

However, this statement is far too restrictive to become a good vision statement because it

characterizes the system rather than stating what should be achieved by developing the

system. The following statement chooses a different perspective:

“Sell electronic and audio books to people in every place in the world (with an Internet

connection) and allow them to read/listen to the acquired book instantaneously”.

This statement is better compared to the previous one for several reasons:

1. The statement defines what the system shall achieve instead of defining the function

of the system.

2. The statement focuses on the benefits of the system for people (and the users).

3. Buying electronic/audio books wherever they are and reading/listening to the book

immediately.

4. The statement does not predefine the type of system.

5. A website may not be the proper solution for reading electronic books/listening to

audio books.

The major drawback of formulating visions and goals that focus on the system itself rather

than on the what the impact is of the system, is that such formulations restrict the solution

space for the team right from the very beginning of the project. As a rule of thumb, avoid any

RE@Agile | Handbook | © IREB 20 | 126

reference to the system under development (and the word “system” itself) in a vision or goal

statement.

Visions and goals are normally associated with a time horizon. This time horizon defines the

period in which a vision or goal should be achieved. We therefore recommend that the

definition of visions and goals should always have a period (or even a specific date) attached

to it. It is not necessary to include the period in the formulation of the vision or goal itself, but

the period should be clear to all team members and stakeholders.

Agile recommends the definition of visions and/or goals for each iteration. Therefore, there

can be different statements for different time periods. A system or product development

could have long term goals (or strategic visions), for instance for the next 3 years. These can

in turn be broken down into goals to be achieved in specific years. And of course, in iterative

development one should also have goals to be achieved in the next iteration.

The benefit of defining visions or goals with a long-term perspective is, that the team

members and all stakeholders have a clear understanding of the big picture, and of the

timeframe in which the big picture will be achieved. This benefit can be illustrated with the

bookshop example presented earlier. The stated vision could be sub-divided as follows:

Overall vision “Sell electronic and audio books to people in every place in the world (with an

Internet connection) and allow them to read/listen to the acquired book instantaneously.”

- End of month 6: Sell electronic books to people in every place in the world and allow them to

read the electronic book immediately.

- End of year 1: Sell audio books to people in every place on the world and allow them to listen

to the electronic book immediately.

- End of year 2: Sell combined electronic and audio books to people in every place in the world

and allow them to read and listen to the electronic book at the same time immediately.

The sub-divided vision presents a clear timeframe for the project and includes the important

information that there will be a bundle of electronic and audio books where the reader can

both listen to and read the text at the same time. This information is very important for the

team since they should design the system for reading electronic books in such a way that it is

possible to include the audio book later in the process. Furthermore, the team is now able to

give feedback to answer the question: Is it realistic to realize the three goals within the

defined timeframe?

2.1.2 Techniques for vision/goal specification

In the previous chapter, you have seen fundaments related to the definition of vision and/or

goals. In this chapter, you will learn specific techniques that can support you in the

development and definition of vision and/or goals. Whatever form is chosen: every

stakeholder has the right to know what the team is striving for. Therefore, the definition of

the vision and the initial goals must take place at the beginning of a development effort.

RE@Agile | Handbook | © IREB 21 | 126

2.1.2.1 SMART

SMART is an acronym and refers to a simplified style of writing goals and objectives,

proposed in 1981 by George T. Doran [Dora1981].

According to Doran, the acronym stands for:

▪ Specific – target a specific area for improvement;

▪ Measureable – quantify or at least suggest an indicator of progress;

▪ Assignable – specify who will do it;

▪ Realistic – state what results can realistically be achieved, given the available

resources;

▪ Time-related – specify when the result(s) can be achieved.

This original definition has been adapted by the Agile community in various ways. From a

Requirements Engineering perspective, the following definition is appropriate:

▪ Specific – target a specific area for improvement;

▪ Measureable – quantify or at least suggest an indicator of progress;

▪ Achievable (instead of assignable) – state a goal that is achievable for the team;

▪ Relevant (instead of realistic) – state a goal that is relevant for the stakeholders;

▪ Time-bound – specify when the result(s) can be achieved.

This modification takes into account two ideas behind agile development:

1. Goals should focus on achievability by the team without focusing on resources.

Resources are not planned; they are assigned by prioritization.

2. Relevance of the goal, meaning the value that is attached to the goal, is more

important than the question of achievability with respect to available resources.

To illustrate the application of SMART, we use the example given above:

“Sell electronic and audio books to people in every place in the world (with an Internet

connection) and allow them to read/listen to the acquired book instantaneously”.

RE@Agile | Handbook | © IREB 22 | 126

The SMART criteria are satisfied by this statement as follows:

Criterion Example

Specific The experience of buying and consuming electronic and audio books will

be improved

Measureable The measurable outcome is buying electronic and audio books at every

place in the world (with an Internet connection) and reading/listening to

them instantaneously

Achievable Internet and mobile technology can provide the desired result

Relevant Electronic and audio books are a popular medium for many people

Time-bound The timeframe is detailed (see above for details)

The SMART criteria can be applied either as a template or as a checklist for a goal

formulation. In the template approach, you explicitly describe each element of the SMART

criteria. The table above is an example of this approach. The disadvantage of the template

approach is that it typically creates redundancy in the formulation.

In the checklist approach, you use the SMART criteria to verify if your goal statement covers

all aspects.

A good combination of both approaches is the following: Make up your mind by using the

SMART template and then use the outcome to define a precise goal that can be

communicated easily.

2.1.2.2 PAM

PAM is an alternative set of criteria for goal formulation proposed by [Robe2003]. The

criteria are defined as follows:

▪ What is the purpose (P)?

▪ What is the business advantage (A)?

▪ How would we measure that advantage (M)?

The PAM criteria focus on the business value behind a goal and exclude the time-

perspective of the SMART criteria. A benefit of using this approach at an early stage is that it

focuses on the different values instead of forcing a time-perspective into the goal definition.

Referring again to our example above, the PAM criteria are not completely satisfied. This is

clearly shown in the following table:

RE@Agile | Handbook | © IREB 23 | 126

Criterion Example

Purpose The experience of buying and consuming electronic and audio books will be

improved

Business

Advantage

Not stated explicitly

Measure The measurable outcome is buying electronic and audio books at every place in

the world (with an Internet connection) and reading/listening to them

instantaneously

The business advantage is not clear in our example. A business advantage could be:

▪ People buy more electronic or audio books when they are available instantaneously;

▪ People buy more electronic or audio books when they are traveling since the books

are available all over the world.

Like the SMART criteria, the PAM criteria can be used as a template or as a checklist for goal

formulations.

2.1.2.3 Product vision box

The idea behind SMART and PAM is the definition of explicit criteria that support the wording

of goals. These criteria are useful when you have gathered much information and want to

structure this information into proper goals and/or a proper vision.

Another way of approaching the definition of visions and goals is the product vision box

introduced by [High2001]. The idea behind the product vision box is that you create a

physical package for your product that shows the key benefits and ideas of a product to

potential customers in a store.

A common format of the product vision box is a half-day workshop. Invite key stakeholders,

if possible from the whole spectrum of those involved with your product (for example end

users, marketing, technical staff).

You provide cardboard boxes, various types of material (for example paper, pencil, crayons,

board markers, aluminum foil, wires) and media material (for example newspapers,

magazines, photos) to the participants of the workshop.

The agenda of the workshop should consist of alternating building and presentation phases.

During the building phase, a team of workshop participants (3-4 people) creates one or more

boxes (packages).

During the presentation phase, the boxes are presented without any explanation to the

participants. Every participant can make up his or her mind about each box. Afterwards, the

creators present the ideas behind the box (es) and a discussion takes place.

RE@Agile | Handbook | © IREB 24 | 126

As an option people that were not part of the workshop can be invited to join the last

presentation phase. This way external feedback is provided to the group, reducing the effect

of group thinking.

The main advantage of the product vision box is that people think about the product idea

from the final outcome backwards. A product package typically provides information about

the most important key features or benefits of a product. Such an approach implicitly

supports a focus on goals and the overall vision. It is great fun for the participants, since it

creates a tangible outcome that can be used later on as a kind of reference point for further

discussion.

A common objection against the product vision box is that there are types of products that

cannot be sold in simple packages. However, these can be developed using agile methods.

An example from the field of non-IT projects: Organizational Change projects have to deal

with various problem domains and needs and therefore multi-dimensional solutions have to

be created that will not fit into one box.

2.1.2.4 News from the future

Another technique to approach the formulation of vision and goals is to write a newspaper

article about your product that comes from the future (see [HeHe2011]). This technique is

derived from techniques for personality development that motivate people to think about

their life from the end, for instance by writing their own obituary.

The news from the future can cover various topics and headlines. Good starting points can

be:

▪ Successful product presentation – write an article from the perspective of a journalist

who participated at your successful product presentation. Mention features,

impressions or ideas that this journalist found great about your product;

▪ Happy 10th anniversary - imagine that your product celebrating its 10th anniversary

and that a journalist writes about this in a newspaper article. Mention ups and downs

in the story of your product and how it has had an impact on peoples’ lives or on the

business you are in;

▪ Product crash report – imagine your product fails and that a journalist reports on its

failure. Mention the reasons that led to the failure, and think about gaps in your

knowledge of the customer, missing features, or other quality problems.

The resulting article can be analyzed to identify potential vision and goals.

It is also a good starting point for further activities. For example, the SMART or the PAM

criteria might subsequently be used to create precise vision and/or goals statements.

The news-from-the-future technique can be performed by individuals or can be done as a

group exercise during a workshop. In the group exercise, the participants should write rather

short articles that can be read and discussed during the workshop.

RE@Agile | Handbook | © IREB 25 | 126

2.1.2.5 Vision boards

The term “Vision Board” refers to a class of techniques that provide structured graphical

representation of the vision and/or the goals on a physical board. The general idea is that:

1. The board provides a content- or time-oriented structure to visualize the whole set of

vision and/or goals to the stakeholders;

2. The vision board is considered to be a living entity that is modified constantly to

represent the current understanding of all stakeholders;

3. The vision board is the single point of truth for all stakeholders when it comes to the

vision and/or goals.

A very simple example of a vision board consists of three columns:

▪ Short-term vision and related short-term goals: what do we want to achieve in the

near future (for instance 4 weeks)?

▪ Mid-term vision and related mid-term goals: what do we want to achieve in the mid-

term (for instance 6 months)?

▪ Long-term vision and related long-term goals: what do we want to achieve in the

long-term (for instance 3 years)?

A second, structure-oriented example of a vision board is the “Product Vision Board”,

defined by [Pich2016]. It consists of the following elements:

▪ Vision: What is your motivation for creating the product? Which positive change

should it bring about?

▪ Target group: Which market or market segment does the product address? Who are

the target customers and users?

▪ Needs: What problem does the product solve? Which benefit does it provide?

▪ Product: What product is it? What makes it stand out? Is it feasible to develop the

product?

▪ Business goals: How will the company benefit from this product? What are the

business goals?

2.1.2.6 Canvas techniques

The term “Canvas Technique” refers to a set of techniques that aim at providing a

structured overview of several aspects of a product. Canvas Techniques are close to Vision

Board techniques, but typically have a broader scope and do not solely focus on the vision

and/or goals of the product. Nevertheless, the vision and/or goals are always part of

canvases and are developed in conjunction with the other aspects covered by the canvas.

Because of this broader scope, there are more slots when using Canvas Techniques that

when using a vision board which is why more space is needed to document all aspects of

Canvas Techniques. Hence, the term canvas is used, because a canvas can be much larger

than a board. Nevertheless, the general idea behind Canvas Techniques is similar to vision

boards.

RE@Agile | Handbook | © IREB 26 | 126

A popular example of Canvas Technique is the “Business Model Canvas” from [OsPi2010].

The idea behind it is to describe a company’s or product’s value proposition, infrastructure,

customers and finances.

Another example is the Opportunity Canvas from [Patt2014]. This canvas assumes an

already existing product that has to be improved.

2.1.3 Changing vision and/or goals

Goals may change during a development effort because of new stakeholders or because of

a changed understanding of the system or the context. Therefore, the documentation of the

vision and/or goals should be updated on a regular basis. Techniques such as the Vision

Board provide a physical representation of the vision and/or goals and allow for easy

communication of changed goals.

Changes to the vision or the goals should be documented explicitly including the rationale

for changing them. Formal documentation of these changes is not necessary. Lightweight

ways of documenting changes are:

▪ A diary or journal (analogue or in a tool) for the vision and/or goals, where every

change is documented with a date and the rationale.

▪ A photo of the vision board (or other representation), including notes that reflect the

change.

This documentation should be considered as the common memory of the vision and/or

goals. It is useful to reflect on changes and to recognize the frequency of changes. This

frequency is an important metric: too frequent changes, especially in later stages of product

development, should be considered an indicator that the overall product development is in

danger since there is no clear overall direction for the product.

2.2 Specifying the system boundary

The concept “System Boundary” consists of a set of terms that allows for precise thinking

and documentation of the scope and context of the system. A proper understanding of the

term “System Boundary” requires an understanding of the terms “Scope” and “Context”.

The following definitions are included in the IREB glossary:

▪ System boundary: The boundary between a system and its surrounding (system)

Context.

▪ Context: The part of a system’s environment being relevant for understanding the

system and its requirements.

▪ Scope: The range of things that can be shaped and designed when developing a

system.

Sometimes the Context of a system must remain unchanged and the System Boundary is

non-negotiable.

RE@Agile | Handbook | © IREB 27 | 126

Typical examples are:

▪ Replacement of a technical component inside a larger existing system.

For example, a software component of an embedded control unit in an existing car

production line must be replaced due to changed legal requirements. The cars are

already in use and the component must fit within the existing interfaces and

hardware. Changing these aspects is not possible.

▪ Development of a system within an existing ecosystem.

For example, an insurance company has a web portal for customers to manage their

insurance contracts. The company has decided to develop a smartphone app as a

second channel for customers. The app will have the same functionality as the web

portal. The app development project may not change the portal or the interfaces to

other systems.

In many development efforts, however, the scope and the system boundary may be

negotiated. That is, elements of the context may indeed be modified during the

development effort. This statement may appear abstract and theoretical, but it has a

significant impact on every development effort. It must be clear from the beginning which

elements of the system context can be modified and which elements must remain

unchanged.

A typical situation is the improvement of a business process through a new system. For

example, a bank wants to replace the paper-based application for new accounts with a web

portal solution3. In the existing process, the potential customer sends the application form to

the bank by post. A bank clerk approves the paper application and sets up the bank account

by entering the data into the banking system. The new system provides a web-based

application for potential customers: the customer enters his or her data into the form and

sends the data to the bank. Immediately after submitting their data, customers receive

confirmation of their application by e-mail. This is the intended modification in the system

context (potential customers no longer use a paper form, they now use the web-based

application).

The more interesting part of this example is the process in the back office. Here, three

scenarios could be possible:

1. The application data is sent via email to the bank clerk. The bank clerk performs the

existing approval process and enters the data manually into the banking system.

2. The approval process is performed within the new web portal by the bank clerk. The

bank clerk checks the application data within the web portal. If the clerk accepts the

application, then the web portal uses a new interface to the banking system to setup

the bank account automatically.

3 Comment: The description of this example is incomplete by intention. We will uncover further missing aspects on the following

pages to illustrate the benefit of various techniques. In case you believe that you already have spotted some missing things,

note them and see if we share your viewpoint.

RE@Agile | Handbook | © IREB 28 | 126

3. The approval process is performed automatically by the new web portal. The web

portal is equipped with a rule-based approval engine that allows automatic approval

of standard applications. In case the application is approved, the web portal sets up

the bank account automatically. In case it’s not approved, the application must be

checked by a bank clerk.

This is of course an over-simplified and incomplete example, but it shows the impact of the

scope decision. In the first scenario, the scope is limited to the web portal, the new

application process, and the email transfer of application data to the clerk. In the second

scenario, the scope also includes the way the bank clerk works in the back office and the

data transfer to the banking system. However, the decision on the application remains with

the clerk. In the third scenario, even the decision process has become part of the scope of

the project.

Which of the three scenarios is appropriate for the bank concerned is not clear from our

example. This depends on various factors that must be identified and decided during the

development effort.

Nevertheless, the bank example shows that a shared and common understanding of the

scope and the context of the system is a prerequisite for an effective and efficient

development effort. Misunderstandings related to the system boundary or the scope may

lead to:

▪ Development of functionalities or components that were not under the responsibility

of the development effort. For example, our bank project has started to develop the

rule-based approval engine (scenario 3), but the stakeholders never agreed on such

an approval engine. If the stakeholders decide that this approval engine is not

required, then the development effort for this engine is lost.

▪ The wrong assumption that functionalities or components that are in fact part of the

system should have been developed outside the system (the assumed scope was too

small). For example, our example bank project has implemented the email transfer of

application data to the clerk (scenario 1), but the stakeholder expected that the

approval has be performed inside the web portal (scenario 2).

The system and the context boundary can be defined by discussing:

1. Which features or functionalities have to be provided by the system and which have

to be provided by the context?

This question targets the system boundary by talking about concrete capabilities of

the system. For example, in our bank project, may the system approve an application

automatically or not (scenario 2 or 3)? Another discussion could be the setup of a new

bank account: should the new system perform this task or not (scenario 1 or 2)?

2. Which technical or user interfaces have to be provided by the system to the

context?

This question targets the system boundary and is closely related to the

feature/functionality question above. Many functionalities require interfaces to users

or other systems. For example, in our bank project, the automatic setup of new bank

accounts (scenario 2) requires an interface to the banking system. Also, the approval

RE@Agile | Handbook | © IREB 29 | 126

by the bank clerk inside the web portal (scenario 2) requires a user interface to display

and approve the application data.

3. Which aspects of the context are relevant / irrelevant for the system?

This question targets the context boundary by explicitly addressing aspects of the

context that have to be examined during system development. For example, in our

bank project, the application form and the process for sending the data to the bank is

definitely part of the context. Whereas the setup of the bank account may be part of

the context (scenario 2 and 3) or may be outside of the context (scenario 1).

4. Which aspects of the system context can be modified during system development?

This question targets the scope of the system by defining which context aspects may

be modified or not. It is important to recognize that an element in the scope is per

definition part of the system context. For example, in our bank project, it could be the

case that the approval decision must remain with the bank clerk (making scenario 3

impossible).

All four questions are of course closely related and must be discussed together. Keep in

mind that the Context Boundary is always incomplete as it can only be defined by the things

that one explicitly excludes from the System Context.

Similarly, the Scope is never final and may change during a development effort. The

important message from a Requirements Engineering perspective is that changes in Scope,

System Boundary and Context Boundary must be made explicit for all relevant stakeholders.

2.2.1 Documentation of the system boundary

The scope and the system boundary can be documented and clarified with several

techniques. In this chapter, we will present four of these: context diagrams, natural language,

use case diagrams and story maps.

2.2.1.1 Context diagram

The context diagram is an element of the essential system analysis [McPa1984] and uses

diagrams to represent the context. It documents the system, aspects of the context, and

their relationship. The notation of a context diagram consists of three modeling elements:

▪ The system under consideration (circle)

▪ Aspects of the context (boxes)

▪ Arrows to represent connections between elements. The direction of the arrow

represents the flow of information

The following figure shows the context diagrams for all three scenarios of the bank account

application portal.

RE@Agile | Handbook | © IREB 30 | 126

Figure 2: Three context diagrams for the bank account application portal example

All three scenarios include the relationship between the potential customer and the portal

(the customer sends application data to the portal) and the relationship between the bank

clerk and the potential customer (the bank clerk sends a notification for approval/refusal of

the application to the potential customer). Documenting the second relationship (between

the potential customer and the bank clerk) is not part of the original context diagram.

However, it is useful to document this relationship in practice, since it clearly denotes that

the system is not responsible for sending this notification.

The context diagrams for scenarios 2 and 3 share the relationship with the banking system to

setup the new bank account in case of approval. This relationship is not part of scenario 1,

since the bank clerk sets up the account manually.

One could argue that the relationship between the bank clerk and the banking system could

also be documented in the context diagram for scenario 1. There are arguments for and

against:

▪ For: Setting up the bank account is part of the overall business process (create a

bank account). This must be documented to understand the overall context.

▪ Against: Setting up the bank account has been defined as out-of-scope for scenario

1. Therefore, it should not be documented.

▪ Both arguments are understandable and valid. The decision for or against the

documentation of such relationships depends on the overall project context.

The main difference between all three scenarios is the relationship between the bank clerk

and the portal. In scenario 2, the bank clerk receives all application data and must approve or

refuse them. In scenario 3, the bank clerk only receives those applications that cannot be

decided upon automatically. In addition, the context diagram for scenario 3 reveals a new

RE@Agile | Handbook | © IREB 31 | 126

and previously missing aspect: the bank clerk receives a notification for automatically

approved/refused applications. This information is necessary for the bank clerk to send a

notification to the potential customer.

Although the portal example is an oversimplified example, the context diagrams for all three

scenarios are substantially different and provide an easy overview of the system and the

context.

2.2.1.2 Natural language documentation of scope and system

boundary

Natural Language is the most flexible and simplest technique for to document scope and

system context. Just provide a list of features/functionalities of the system and a list of

further aspects to document the System Context (remember to document aspects that are

considered outside as well). Use an additional list to document the scope of the system.

The scope and system boundary documentation from scenario 1 of the banking project

could be represented by the following list.

Scope and system boundary of the bank account application portal (Scenario 1)

Features/functionalities

of the system:

▪ Web-based from to apply for a bank account

▪ Send email to customer to confirm having received the

application form

▪ Send application data via email to the bank back office

Aspects inside the

context:

▪ Customer who wants to apply for a bank account

Aspects inside the

scope:

▪ Process of filling out the application form (performed by

customer)

▪ Process of sending application data to the bank clerk

Aspects outside the

context:

▪ Bank clerk from the bank back office who approves the

application (or not)

▪ Setup of the bank account (if application is approved)

▪ Send approval of application to customer (if application is

approved)

▪ Send refusal of application to customer (if application is not

approved)

Comparing this list with the description of scenario 1 in chapter 2.3.1 reveals one new aspect

that has not been mentioned before: The description does not mention approval or refusal

information. It is not clear how the customer is notified of the approved or refused

application.

RE@Agile | Handbook | © IREB 32 | 126

The above list shows that this aspect is not included in the context. Development therefore

does not need to concern itself with this topic. Without this explicit statement, it is very likely

that different stakeholders might have different expectations on how approval or refusal

would be handled with the new system.

2.2.1.3 Use case diagram

The use case diagram is part of UML. It is a type of diagram that models the actors and the

use cases of a system. A use case specifies the behavior of a system from a user’s (or other

external actor’s or for example other system’s) perspective: every use case describes some

functionality that the system must provide for the actors involved in the use case.

Use case diagrams focus in detail on actors and their associated functions. This is very

useful for clarifying the scope and context of the system. The following notation elements of

use case diagrams are useful for modeling the system context:

▪ System Boundary (box with name of the system)

▪ Actor (stick figure with name below or box with name)

▪ Use case (oval with name of use case)

▪ Relationship between use case and actor (line)

Use case diagrams also provide notation elements to model relationships between use cases

(for example extends and include relationships). The notation elements are used to

document more detailed relationships among use cases. This level of detail is typically not

useful for an initial clarification of the system context. The following figure shows use case

diagrams for all three scenarios of the bank account application portal.

Figure 3: Three use case diagrams for the bank account application portal example

RE@Agile | Handbook | © IREB 33 | 126

At first sight, the use case diagrams give an overview of the increase of the functional

complexity of the three scenarios. Scenario 1 is very simple (one use case), whereas scenario

3 is the most complex one (five use cases).

The core information of the use diagram is carried by the names of the use cases. Therefore,

it is important to carefully define proper names for the use cases.

Comparing the use case diagrams for scenarios 2 and 3, one can see that the use cases for

“considering an application” in scenario 3 are detailed with the adjectives “automatically”

and “manually", to clarify who is performing that task. This clarification is not necessary for

scenario 2, since the bank clerk is responsible for considering all applications.

The main differences in terms of system boundary between the three scenarios are clearly

visible:

▪ In scenario 1, the bank clerk is not part of the system context, since the clerk is not an

actor of the portal; the clerk receives the application via email.

▪ In scenarios 2 and 3, the bank clerk is part of the system context, since the clerk

interacts in various ways with the system.

▪ In scenarios 2 and 3, the banking system is an actor, since the portal has to interact

with the banking system for setting up bank accounts.

One aspect of the process is not mentioned in the diagrams: the notification of the customer

in case of approval or refusal. If this notification is part of the banking system, then the

diagrams are correct and the notification is out of scope. But, if this is notification is part of

the application portal, the diagrams must be extended to include the notification.

Comparing the use case diagrams and the context diagram (see Figure 2), the main

differences between the two notations can be seen:

▪ In the context diagram for scenario 1, the bank clerk is documented, since the clerk is

an element of the system context that receives information (via email) from the

portal. In the use diagram for scenario 1, the bank clerk is not present since the clerk is

not an actor with respect to the portal.

▪ The use case diagram does not allow documenting relationships between actors that

are outside the system. Actors can only be documented if they are included in the

system context. The context diagram allows documentation of the information flow

between context elements (the notification of approval/refusal from clerk to

potential customer).

▪ The use case diagram provides an initial functional decomposition of the system (the

use cases). This functional decomposition is not visible in the context diagram.

These differences originate from the notation elements of both diagrams and should not be

understood as advantages or disadvantages of one diagram over the other. If possible, one

should create a context diagram and a use case diagram in parallel to benefit from the

strengths of both diagrams. If one must choose between context and use case diagram, the

following rule of thumb is helpful: if the system under consideration is embedded in a

complex context with various important interactions outside the system, then a context

diagram would be preferable. If the system under consideration has a complicated set of

RE@Agile | Handbook | © IREB 34 | 126

functionalities and interactions with various users and/or related systems, then a use case

diagram would be preferred.

2.2.1.4 Story map

A Story Map [Patt2014] is a technique for documenting and managing product development

during the whole product development process. Its main structure is a two-dimensional

arrangement of backlog items. The horizontal dimension focuses on the backbone, meaning

the narrative flow of the system (or the overall process provided by the system). The vertical

dimension provides details for each part of the narrative flow as well as a separation of items

according to the development sequence of the software.

Thus, the Story Map provides a useful model for understanding the functionality of the

system and describing context/scope on a detailed level. Further details on Story Maps will

be presented in chapter 3.4.

2.2.2 The inevitability of a changing scope

The definition of an initial scope (including the system context) must take place at the

beginning of a development effort. Without a clearly defined system scope, the team has no

framework for development. And without an understanding of the context, the team has no

understanding where the system will be situated and where it can research information on

the development object.

Nevertheless, scope and system context are never final and stable. In fact, the only event

that would make the scope and system context stable would be to take the system out of

operation! There are many reasons that require an adjustment of the scope and/or the

context. The customer may demand changes and require new functionalities; changes may

be necessary as the result of new or modified legislation.

The most common reason, however, for changing the scope and/or the system context, is

the evolving understanding of the developers and/or of the stakeholders. In general, every

development effort constitutes a significant change in the system context and these

changes cannot be fully predicted. Learning new things is natural in such situations. And the

new findings often have an impact on the scope and/or system context.

This situation is not an excuse for not having a proper definition of scope and system

context. From a Requirements Engineering perspective, in fact, it is the main reason for

defining scope and context systematically. Without a proper initial understanding of current

scope and system context, it is only a matter of chance whether the need to adjust it later,

will even be recognized. The techniques presented in this chapter are lightweight and easy to

use. Using the techniques properly requires only a little effort and provides huge benefits to

every development effort.

RE@Agile | Handbook | © IREB 35 | 126

2.3 Stakeholder identification and management

2.3.1 Fundamentals

According to the IREB glossary, a Stakeholder is a person or organization that has a (direct

or indirect) influence on the requirements of a system. Furthermore, indirect influence also

includes situations where a person or organization is impacted by the system.

This definition emphasizes the importance of Stakeholders, the proper identification of

Stakeholders and of Stakeholder Management during the development effort. The

statement “responding to change over following a plan” from the Agile Manifesto is often

misunderstood and used as an excuse to skip proper Stakeholder Identification at the

beginning of a development effort. The identification of a new stakeholder is an inevitable

change to which the team must react.

Failure to identify and include an important stakeholder in a development effort can have a

major impact: important requirements can be discovered (too) late, or even missed

altogether. This may lead to expensive changes late(r) in the process or even a useless

system. Stakeholder Identification and Management is an important investment to minimize

the risk of missing important stakeholders and their requirements.

2.3.2 Identification of stakeholders

In this chapter we present the onion model as a simple technique for Stakeholder

Identification and classification. Furthermore, the importance of users as central

stakeholders, as well as the importance of indirect stakeholders, is discussed.

2.3.2.1 Onion model for stakeholder identification and

classification

The Onion Model from Ian Alexander [Alex2005] is a simple tool for Stakeholder

Identification and classification. The model consists of three types of stakeholders (onion

layers) that can be systematically searched for stakeholders:

▪ Stakeholders of the system: These stakeholders are directly affected by the new or

modified system. Typical examples of this class are users, maintenance personnel

and system administrators.

▪ Stakeholders of the surrounding context: These stakeholders are indirectly affected

by the new or modified system. Typical examples of this class are managers of users,

project owners, sponsors, or owners of connected systems (for example systems that

have an interface with the system under development, see chapter 2.3.4).

▪ Stakeholders from the wider context: These stakeholders have an indirect

relationship to the new or modified system or to the development project. Typical

examples of this class are legislators, standard setting bodies, competitors, non-

governmental organizations (NGO’s), Trade Unions, Environmental Protection

Agencies et cetera.

RE@Agile | Handbook | © IREB 36 | 126

Stakeholders of the system are also called direct stakeholders. Stakeholders from the

surrounding and wider context are also called indirect stakeholders.

The onion model can be applied in several settings for Stakeholder Identification:

▪ Thinking tool - use the onion model to systematically think about the system under

development and to write down every possible stakeholder that comes to mind for

each layer.

▪ Interview guideline - use the onion model as a guideline for short stakeholder

interviews. During the interview, the stakeholder can be asked for potential

stakeholders within each layer of the onion.

▪ Workshop guideline - use the onion model to structure a workshop for stakeholder

identification. The model can be used as a visualization tool (for example on a board

or flip chart). Each layer of the onion can be analyzed with the workshop participants.

For example, every stakeholder writes the names of stakeholders on a card.

Alternatively, each layer can be elaborated during a brainstorming session.

As a rule of thumb, the identification of stakeholders should rely on a broad range of sources.

A single interview with one person is typically not sufficient to identify the most important

stakeholders. Instead, the product owner should plan for several interviews and/or

workshops for stakeholder identification. If certain names are mentioned several times (for

example Maria is referred to as a very knowledgeable person on some business topics), then

this redundancy should be interpreted as a sign of importance and not as time wasted.

2.3.2.2 Importance of the user as a direct stakeholder

If a system has human users, these users are amongst the most important direct

stakeholders. The success of a system relies on the acceptance of the system by its users.

Even if the features of a system are perfectly implemented, then the system is worthless if

the users do not want to use the system.

A simple classification with respect to stakeholders is the separation between open and

closed environments:

▪ In an open environment, the users have alternatives to select from. For example, a

company wants to develop new office software (for example for word processing and

presentations). There are several alternatives on the market for this kind of product.

The stakeholder analysis must focus on information that helps to convince users to

switch from their existing system to a new one.

▪ In a closed environment, the users are “forced” to use a new system. For example, a

company develops a new business administration system for managing their business

and every employee of that company must use this new system because it is

connected to every part of the company. In such a closed environment, stakeholder

identification (and management) may not receive sufficient attention, because the

users have no choice but to use the system. Such behavior underestimates the power

of the corporate immune system: if the users do not accept the new system, then the

immune system of that organization will find a way to prevent its introduction.

RE@Agile | Handbook | © IREB 37 | 126

The users of a system (in both open and closed environments) typically cover a wide

spectrum of people with different expectations, attitudes, and prerequisites. Understanding

the spectrum of users for a system is an important first step.

If the number of users is small, it is advisable to get to know them (or their representatives)

via personal interviews. In such situations, the users can be asked requirements-related

questions directly.

If the number of users is large or even unknown (typically in open environments), the

spectrum of users should be captured using other means. A proper tool for such a situation is

the Persona Technique [Coop2004]. A Persona represents an example user with distinct

characteristics. Such a Persona is typically described in a detailed way including a real name

(for instance Jim), one or more pictures, a short CV and a list of hobbies.

The goal of the description is to illustrate the persona as realistic as possible and to ask

requirements-related questions to this persona (for instance: What kind of search function

would Jim prefer?). A single persona is typically not sufficient for a development effort. As a

rule of thumb, a project should develop 3-5 persona with various backgrounds. It is

especially advisable to develop persona with distinct positions (for instance a novice and an

expert business person). If new software is developed for these selected distinct user

profiles representing the extreme usage scenarios of the product, then most mainstream

users (for example the average or experienced user) will also accept the system.

Persona is a technique that is embedded in the design process of new software. An

alternative, more measurement-oriented approach is the application of data analytics,

Google analytics and big data: The behavior of online users can often be analyzed directly by

embedding such technologies into deployed product increments. The main benefit of such

techniques is that they provide concrete data on user behavior. The main drawback of such

techniques is that they must be planned in detail and implemented into the software

increment. Hence, the measurement objectives for such techniques have to be clear since

gathering of the related data is expensive.

2.3.2.3 Importance of indirect stakeholders

Indirect stakeholders can be found in the surrounding context of the system and may be as

important for a development effort as the users themselves. The term indirect stakeholder is

by intention very broad since indirect stakeholders differ significantly for different types of

systems. The general idea behind indirect stakeholders is to search for stakeholders that can

have impact on the success of a system, either positively (support) or negatively.

Support can be provided in various forms. A stakeholder can provide important information

related to the domain (for example important business rules or user needs) or on future

developments in the domain (for example a new type of product, a new law that may impact

the business). A stakeholder can also provide political support during the development and

introduction of the system (for example an important manager from a related department).

A negative impact on the success of a system may also happen in various ways. An

important aspect may be, for example, the formal admission of a system in regulated

RE@Agile | Handbook | © IREB 38 | 126

environments (for example medical systems): if relevant stakeholders for the admission of a

system are not involved early in the development process, then a new system may fail to

fulfill important admission criteria. The political dimension of a development effort is another

aspect (for example a manager of a department with a competing product may hinder the

development). The negative impact is not limited to the development effort. Underestimated

types of indirect stakeholders are NGO’s or people that are only loosely related to a system.

For example, an NGO that is active in the field of personal health data protection may have a

strong view on storing certain types of personal health related data. If you develop a system

in this area, then such an NGO may start a campaign against your system.

Investing time in the identification of indirect stakeholders should be considered as a means

of gathering additional information for the development process in order to reduce the risk

of failure. As a rule of thumb, a product owner responsible for Requirements Engineering

should develop a broad view on indirect stakeholders.

Talking to indirect stakeholders is often beneficial, even if an indirect stakeholder does not

provide new insights; the confirmation of already known information is often also beneficial.

2.3.3 Management of stakeholders

Systematic identification of key stakeholders must take place at the beginning of a

development effort as a setup activity. Managing the identified stakeholders throughout the

development effort is a continuous activity. Although this sounds very costly, a simple list

including contact details and relevant attributes (for example areas of competence or

availability) will suffice in most contexts. If the project uses a wiki to manage the

documentation, then the stakeholder list can be created and maintained easily in the wiki.

The list may change at any time, either because a stakeholder was initially overlooked or due

to changes in the context, such as a new NGO being established. Once a new stakeholder

has been identified, the stakeholder should be approached to elicit the requirements for the

new system and to gather other valuable information.

Because of the broad range of possible stakeholders, every participant in a development

effort (for example the developers and the product owner) should participate in the

identification of missing stakeholders. The first step is to create awareness among the

developers about the importance of stakeholders and to look for signs of new or missing

stakeholders.

2.3.4 Sources for requirements beyond stakeholder

Depending on the system and the domain, existing documentation, neighboring systems

with interfaces to the developed system, legacy systems or even competitor systems may

also be important sources of requirements. The following list provides some examples:

▪ If the system under development has a predecessor system, the documentation

(if there is any) and the source code of this legacy system can provide important

requirements (for instance detailed requirements on data structures).

RE@Agile | Handbook | © IREB 39 | 126

▪ If the system under development has interfaces to other existing systems (for

example in a large business context), the documentation of the interfaces provides

important requirements for the interaction between the system under development

and these systems. The users, developers et cetera of these existing systems are of

course important stakeholders.

▪ Almost every system has one or more similar systems, meaning systems that perform

similar tasks in other contexts. Such similar systems are often underestimated as a

source for requirements and ideas. If you develop, for example, a shopping system

for a highly specialized product, then you should have a look at existing online shops

and their functionalities to see if they could also be useful for your systems.

▪ If developing a highly innovative system, recent research in this area could also be an

important source for requirements. There are several Internet databases that can be

searched for research material (for instance Google scholar).

If your development effort can benefit from additional sources for requirements, these

should be systematically identified and managed in a way similar to managing stakeholders.

Detailed information on the management of other requirements sources is provided in the

IREB module Elicitation.

2.4 The dependencies between visions/goals, stakeholders and

the system boundary

The definition of vision and goals, stakeholders, system scope and context are

interdependent:

▪ The relevant stakeholders formulate the vision and the goals. Therefore, the

identification of a new stakeholder may have an impact on the vision or the goals.

▪ The vision and goals can be used to guide the identification of new stakeholders by

asking: Which stakeholder may be interested in achieving the vision and/or the goals

or is affected by achieving the vision and/or the goals?

▪ Vision and goals can be used to define an initial scope by asking. To do so you need to

ask: Which elements are necessary to achieve the vision and/or the goals?

▪ Changing the system boundary (and thus the scope) may have an impact on the

vision and/or the goals. If aspects are removed from the scope, then the system may

no longer have sufficient means to achieve the vision and/or the goals. Conversely, if

the scope is extended, this may provide new means to fulfill the vision and/or the

goals.

▪ Stakeholders suggest the system scope. Therefore, the identification of a new

relevant stakeholder may have an impact on the scope. For example, an important

manager may decide that the scope of the project can be extended.

▪ A change of the scope (for example to fulfill a new or modified goal) requires

agreement from the relevant stakeholders.

These strong interdependencies mean that it is important to balance all three elements and

to examine the impact of changing one of the three elements on the others.

RE@Agile | Handbook | © IREB 40 | 126

Being aware of these interdependencies is the first step towards working jointly on vision and

goals, stakeholders and scope. Because of these tight interdependencies, we recommend

handling these elements together.

Before starting with iterative development, we recommend creating a coherent, initial

specification that includes:

▪ Vision and/or goals

▪ System scope and system context

▪ Initial list of stakeholders (and potentially other sources)

The methods and tools presented in this chapter can be used in a lightweight way to create

such a specification. A good, lightweight starting point is a half-day workshop with all three

elements on the agenda. Every participant should prepare for the workshop by answering

the following questions:

▪ What is your vision for the system? What are the most important goals for you?

▪ What is your understanding of the system context and the scope?

▪ Which stakeholders and other sources (documents, systems) have to be considered

for the project?

If the workshop participants are not familiar with the terminology, provide the definitions as

background information to them. The outcome of this workshop is a starting point for the

creation of an initial specification using the methods and/or techniques described in this

chapter.

The initial specification should be considered as a living document that should be checked

and updated on a regular basis. The rituals and techniques of agile development provide

several ways for lightweight maintenance of this documentation. A pragmatic approach is to

include a crosscheck against context/scope documentation in the Definition of Ready. For

example, if the system scope is described using a use case diagram, each backlog item

would be linked to a use case and an actor.

2.5 Case study and exercises

Throughout this handbook we will use a case study. Imagine you are creating a learning

system. The learning system is intended to support students in learning Requirements

Engineering. Short video lessons should be offered together with questions to assess

whether a student mastered the various topics. The platform should be useable on any

device that allows the students to connect to the Internet, meaning smart phones, tablets,

laptops, … For the manager of a larger group of students the platform should offer

information about the progress of the individual students. We suggest calling the platform

“iLearnRE”.

RE@Agile | Handbook | © IREB 41 | 126

Suggestions for exercises:

If you want to practice the Clean Project Start, we invite you to use the iLearnRE case study. As

an initial list for the vision and/or goals, we have defined the following statements:

- Online Video Training Portal to learn about Requirements Engineering and prepare for the

IREB exam

- Available on different platforms even with low-bandwidth internet connections

- Includes a chat room/discussion forum to discuss issues with other students

- A management dashboard to control progress of students in your team

We have further defined the following list of users:

- Students

- Administrator of the Portal

- Team Leaders (of Students)

- Question Authors

With this information, you can work on the following exercise:

1. Use the techniques from paragraph 2.1.2 to reformulate the vision/goal statements

2. Create a context diagram for iLearnRE

3. Create a use case diagram for iLearnRE

4. Think about additional stakeholders for iLearnRE

RE@Agile | Handbook | © IREB 42 | 126

3 Handling functional requirements

In chapter 2 you have learned about the clean project start, for instance about important

prerequisites that you should gather before beginning iterative, incremental development.

This chapter deals with the eliciting, discussion, recording and structuring of functional

requirements. The other two categories of requirements (quality requirements and

constraints) will be discussed in chapter 4. Many of the ideas in this chapter are also relevant

for these other two categories.

In this chapter you will learn that it is quite normal that stakeholders talk on different levels of

granularity all the time. They will sometimes ask for very abstract things, where you as a

product owner will have to work quite hard to find out all relevant details. And sometimes

they will ask for very small, precise things that are already close to what developers can

understand and implement. Your job as a product owner is to deal with all these levels of

granularity. High level is not bad if these features are not needed very soon. But for those

that should be implemented in one of the next iterations more precision is required.

In the agile world, coarse-grained requirements are often called epics, themes or features.

This chapter will show you how to transform these fine-grained requirements into INVEST

criteria so that they are sufficiently precise to be processed by the developers (see also

3.3.3).

As soon as you accept the idea that requirements do exist on different levels of granularity,

some questions naturally arise:

▪ How do we deal with multiple levels of granularity?

▪ What criteria can and should be applied to split big, abstract topics into smaller

blocks?

▪ Is it sometimes necessary to group many small requirements into larger chunks so

that we have a “bigger picture” for orientation?

▪ How precise do we have to be before the developers can begin with the

implementation?

▪ Is it necessary or advisable to keep multiple levels of requirements, or can we throw

away abstract statements as soon as we have more concrete requirements?

▪ Do we prefer to structure the backlog according to functional relations/processes, or

according to other relations, such as technical contexts?

▪ Do we have to capture all of this in writing or can we simply talk about it?

In this chapter we will deal with all those questions. As mentioned earlier we will concentrate

on Functional Requirements. In chapter 4 we will discuss quality requirements and

constraints. In chapter 5 Estimation, Ordering and Prioritizing of Requirements will be

discussed.

This chapter 3 is solely about managing complex functional requirements and refining them

to a level such that they can be taken on by developers.

RE@Agile | Handbook | © IREB 43 | 126

3.1 Different levels of requirements granularity

Let us take some examples from our case study “iLearnRE“. We can formulate one of our

goals as: “As a student I want to learn about Requirements Engineering in an online video

course, so that I do not have to go to a classroom.“

Let's assume that one of your stakeholders now requests the following:

 “As a department head, I want to be able to check the learning progress of all my

employees so that I'm able to make decisions about the further resources required.”

This is not a very precise statement, since we do not necessarily understand what “progress”

means. Also, we do not know what the result of this check should look like. But it is a relevant

request. We would characterize this as a coarse-grained requirement.

Assume that one of the students comes up with the request:

 “While playing a video clip, I want to be able to see the rest of its runtime in seconds

so that I know how much longer I should concentrate.”

This is a more precise requirement that still needs some more details for implementation

(location, size, color of the runtime display) for implementation. These details can be added

by the product owner, which will lead to a solution by the product owner, which is not

necessarily the best solution. Or the product owner asks the team during the refinement

meeting for options regarding the details and decides based on the available information.

Stakeholders constantly talk to us on all levels of granularity. As a product owner you cannot,

and should not, force them to be more structured. Working with these different levels of

requirements and structuring them is your job as product owner, with the support of those

helping you during the Requirements Engineering process.

As Figure 4 shows, every system will have requirements on different levels of granularity

below the top-level vision and/or goals. As product owner you are striving for two goals:

1. To have an overview of all currently known functional requirements. This allows to

select the most valuable ones for early implementation, to keep the bigger picture in

mind et cetera;

2. Understand requirements in enough detail so that they can be taken on by the

developers for implementation.

Some methods give specific names to the levels of requirements. SAFe for example calls the

big chunks “epics”, the mid-size requirements “features” 4 and the lower level requirements

“stories”. Other popular names for more abstract requirements are “topics” or “themes”.

There is no consensus in the Agile community about the terminology on the different

abstractions of requirements. This means that each team has to decide for itself which and

4 SAFe has also the optional Level “Capabilities” between Epics and Features.

RE@Agile | Handbook | © IREB 44 | 126

how many levels (e.g., epics, features, stories) are necessary for its own backlog item. We will

discuss these terms in chapters 3.2 and 3.6.

During the requirements elicitation and documentation process, this hierarchy of granularity

can be established in different ways. As mentioned earlier, stakeholders typically tell you

their wishes at various levels. So you can try working top-down (from visions and/or goals to

lower level requirements), bottom-up (grouping lower level requirements into larger chunks),

or middle-out (starting with requirements in the middle, breaking some down into more detail

while others are grouped together).

Figure 4: Requirements on different levels of granularity

As product owner you should maintain the relationships (traces or links) between all

requirements. This will not only give you a better overview, but will also allow you to discard

requirements that are not goal-oriented. Thus, you can avoid requirements creep and

concentrate on those that should really be achieved.

Note that some detailed requirements can be part of multiple, higher-level requirements, as

indicated by the black dots in Figure 4. For instance, a detailed activity can be performed as

part of two or more business processes.

Figure 5 shows some example requirements from the case study iLearnRE, including their

links.

RE@Agile | Handbook | © IREB 45 | 126

Figure 5: Sample requirements from the case study

Such a structured hierarchy of requirements will allow the product owner (and all other

stakeholders) to avoid the risk of being lost in a larger project. The levels in this hierarchy can

be used to come up with estimates and they can be used to prioritize requirements. This will

be discussed in more detail in chapter 5.

Criteria for grouping or splitting requirements, useful notations to capture them, and tools

and techniques to support the overview will be discussed in the next chapters.

3.2 Communicating and documenting on different levels

The vision and/or the goals have to be made more precise in order to come up with

functional requirements that can be communicated to and implemented by the developers.

Based on the principle of “divide and conquer“, we need to decompose a large system or

product into smaller parts. Figure 6 illustrates this approach. We will discuss strategies and

tactics how to achieve this goal.

RE@Agile | Handbook | © IREB 46 | 126

Figure 6: Decomposing functional requirements

Here are some approaches for decomposing a large system (including examples from the

iLearnRE case study):

1. Split into logical functions (also called features, epics or themes):

For example: Establishing a contract for e-learning, watching videos, testing your

knowledge with questions or checking learning progress

2. Use history, for instance the structure of an existing product, as a partitioning

theme:

Since we have no predecessor project of our case study this strategy does not work

here.

3. Split by organizational aspects (meaning parts serving different departments or

user groups):

For example: Software for students, software supporting the team leader, software for

the admins of the iLearnRE product

4. Split according to hardware:

For examples: iLearnRE desktop with responsive design, iPhone native app, Android

native app

5. Split by geographical distribution:

For example: iLearnRE for a country with the highest number of potential users,

extension to other countries with different legislation.

6. Split by data (business objects):

For example: functions dealing with videos, functions around questions, functions

around contracts and functions around invoices

7. Split into externally triggered, value-creating processes.

All of these approaches will result in smaller chunks that can then be analyzed separately.

The first six approaches look at the system’s internal structures: its functions, its historical

structure, its organizational split, its hardware or geographical distribution or its business

objects.

Only the last approach (value-creating processes) starts in the context, outside the scope of

our system. It looks at external triggers to which our system should react.

RE@Agile | Handbook | © IREB 47 | 126

These triggers could have different sources: human users needing something from the

system, other software systems sending input and requesting some system action,

hardware devices (like sensors) triggering an action inside our system.

The context diagram is a valuable source when identifying such external triggers, since it

shows all adjacent systems that might request some action from the system under

consideration.

This value-oriented decomposition has been suggested by many authors over the past

decades: [McPa1984] called it “event-oriented decomposition“, [Jaco1992] called it “use

case decomposition”, [HaCh1998] called it “business processes”, and finally [Cohn2004]

called it “user stories”. All of them suggest different notations to capture the results of this

decomposition. Figure 7 shows such a decomposition in two of these notations: use cases

and user stories.

Figure 7: A value-oriented system decomposition into processes in different notations

Let us ignore notations for a moment and study the characteristics of these decompositions.

Agile experts will recognize these criteria as the first three of Bill Wakes’ INVEST criteria

[Wake2003]).

All the resulting processes are:

▪ I: Independent 5, i.e. independent of each other. This means that they are self-

contained and minimize mutual dependencies. They should not overlap in concept,

and we would like to be able to schedule and implement them in any order.

5 Another interpretation of the letter “I” is “Immediately actionable” [Suth2022]

RE@Agile | Handbook | © IREB 48 | 126

▪ N: negotiable, meaning they do not yet represent a fixed contract, but leave space

for discussions of the details.

▪ V: valuable: they bring real value to the requester, that is to a person or another

system in the context.

The other criteria of INVEST will be discussed in the next chapter about user stories.

The approaches for decomposition as mentioned earlier can also be used. Especially when

writing requirements for an existing system, its current structure of components or

subsystems is often a good starting point for eliciting new requirements. There is, however, a

danger of specification gaps or overlap between those parts (see Figure 8). Since all backlog

items will be discussed and negotiated you would probably catch such gaps and overlaps.

But thinking in terms of value creating processes (with whatever notation) avoids these

dangers right from the beginning.

Figure 8: Specification gaps and overlaps

A suggestion about how to come up with a good value-oriented process decomposition is

not to think in terms of users or actors of the system, but to identify events that happen in

the context and to which the system has to react. [McPa1984] identified two basic kinds of

events:

▪ External events: Triggered by users or adjacent systems

▪ Temporal events: Triggered by time or observation of system internal resources

As a product owner you might miss the second category since they have no explicit actor or

user. The system executes a predefined process without external triggering input, just

triggered by time or observation of internal resources.

RE@Agile | Handbook | © IREB 49 | 126

Examples for both kinds from our case study:

- External event: “As a student I want to assess my knowledge with test questions.”

- Temporal event: “Two weeks before the end of the subscription period it is time to remind

students about a possible prolongation.”

We have now seen several approaches to find functional requirements to fulfill our visions

and goals. The suggestion is to apply a process-oriented decomposition strategy since it

helps to identify Independent, Negotiable and Valuable chunks of functionality. Any other

decomposition strategy that results in such INV-chunks is also fine.

As a product owner you want to achieve an overview of the system’s functionality. Of

course, your backlog is always open to accept more functionality; however, for decisions

about the project roadmap, for rough estimations, or for discussing minimum viable or

minimum marketable products, the overview will help you. It is a good basis for deciding

where to look for more detail early on.

Having discussed ways to come up with a rough decomposition, let us now concentrate on

communicating and documenting these functional requirements.

The basic choice is between drawing and writing. You can visualize a level 1 decomposition of

your goals or visions either by drawing a use case diagram, or you can write larger user

stories and put them onto separate cards. Figure 7 showed excerpts from our case study in

both styles, side-by-side. The following chapter will discuss user stories in more detail.

Note that in principle both notations contain the same amount of information and are equally

detailed or abstract. It is more or less a matter of personal taste whether you prefer overview

pictures or written backlog items.

3.3 Working with user stories and backlog items

For a product owner, user stories are an excellent way to communicate requirements to all

stakeholders and also to the developers. User stories are usually captured on story cards.

Although a multitude of tools is available to capture them electronically.

User stories have become very important in the agile environment in recent years. The name

alone indicates the importance of structuring and developing requirements and the resulting

products in a user-oriented and user-centered way. In other words, to focus on the benefits

for the user. This user perspective is important because we primarily develop in an agile way

in order to receive regular feedback from users. We receive good feedback when the

individual iteration is also comprehensible, usable and valuable for our users. We have

already covered this in detail in chapter 2.3.2.2 and will also go into it in chapter 5.

RE@Agile | Handbook | © IREB 50 | 126

It is also important to understand that the term "user story" is often used with different

meanings:

▪ As a communication promise to formulate and discuss user-centered requirements.

A user story is often formulated very globally in order to be detailed later in

discussions. The discussion about the story is more important than the actual

documentation afterwards (see Mike Cohn

https://www.mountaingoatsoftware.com/agile/user-stories)

▪ As the lowest (most detailed) level of requirements structuring or lowest level of

abstraction (e.g., epic->feature->(user-)story). The term "user story" is often used

instead of "story" at the lowest level.

▪ As a template to describe requirements from a user's perspective at various levels of

abstraction (for details see 3.3.1)

Figure 9: User story as the lowest (most detailed) level of requirements structuring or

abstraction level

https://www.mountaingoatsoftware.com/agile/user-stories

RE@Agile | Handbook | © IREB 51 | 126

Figure 10: User story as a formal structure (template) for formulating requirements from a

user's perspective

We have (unfortunately) already seen these different meanings of "user story" in this

handbook. In the chapter 3.1 we gave the abstract requirement "As a department head, I

want to be able to check the learning progress of all my employees so that I'm able to make

decisions about further necessary resources", as well as the more precise requirement

"When playing a video clip, I want to be able to see the remaining running time in seconds so

that I know how much longer I should concentrate" as examples. In both cases, the

requirements are formulated in the formal structure of a user story (see Figure 10), but at

different levels of abstraction, one at feature level and the other at story level. User stories

can therefore be both - a feature or a story - what might be contradictory and confusing at

a first glance. Nevertheless, we would like to point out that both uses of user story occur in

practice and have become established.

However, this ambiguous use of the term "user story" often leads to misunderstandings: "Are

we talking about the hierarchy or the formal structure?".

In order to defuse this ambiguity, we use the term "story" in this handbook for the lowest

elements of the requirements structure (see Figure 9). Stories can be formulated as a user

story (user-oriented) or, for example, as a technical story (for internal-maybe technical-

needs).

When we refer to the template shown in Figure 10, we will use the term "user story template".

Please note that the user story template can be used not only to describe stories, but also

epics and features (i.e. at all levels of the requirements hierarchy) if this seems appropriate

(see Figure 9).

In general, it should be noted that user stories are not complete requirements in themselves;

rather, user stories are a communication promise [Cohn2004]. In order to create complete

requirements and corresponding backlog items, further detailing (documented and/or in

discussion) will have to take place.

If we want to name a requirement independently of the abstraction level, we use the term

backlog item. A backlog item is therefore everything that exists in a backlog. Regardless of

whether it is an epic, a feature, a story or a user story.

RE@Agile | Handbook | © IREB 52 | 126

3.3.1 A template for user stories: user story template

Mike Cohn defines user stories in the following way:

(https://www.mountaingoatsoftware.com/agile/user-stories):

User stories are short, simple descriptions of a function. These are presented from the

perspective of the person who desires the new function, usually a user or customer of the

system. They typically follow a simple template:

▪ E.g., As a <role/person> I want <goal/desire> so that <benefit>.

Note the three components of this formula. They ensure that:

1. we have someone who wants that functionality (“as a department head …”),

2. we know what the user wants ("... I want to be able to check the learning progress of

all my employees ...") and

3. we understand why, that is, the reason or motivation behind it ("... so that I'm able to

make decisions about the further resources required").

The formula helps us to think about Who wants What and Why. It is not so much the

formalism that makes user stories successful, it is asking and answering these three

questions. For this reason too, other types of formulation are just as effective as the above,

provided that these three questions are answered in full.

You have seen some examples for user stories from our case study iLearnRE in Figure 7.

Here are some additional examples:

▪ As a student I want to put questions into a forum so that others can provide answers

or opinions.

▪ As a questions author I want to add new questions and answers to the pool so that it is

possible for students to test their knowledge.

▪ As manager of the portal I want to upload new versions of official IREB questions so

that I make sure that our portal is always up-to-date with IREB.

In his definition Mike Cohn explained that user stories are told from the perspective of the

person ("users") who desires the new function. Note that sometimes the term “user” is a bit

misleading, since the person wanting a function is not necessarily the one working with the

system as a user.

For instance, in the last example: the administrator who has to upload new versions of official

IREB questions is not necessarily the one who wants this to be done. It is the business owner

who wants this to be done.

This is especially true for processes that are time-triggered, meaning the process is

executed automatically by the system at a particular time or when some condition is fulfilled.

A “user” is not needed, but there has to be someone who benefits from the process –

otherwise executing the process does not make sense. As a product owner or requirements

engineer you should always search for this beneficiary. Ask yourself: Who really wants this

feature and sees value in having the feature?

https://www.mountaingoatsoftware.com/agile/user-stories

RE@Agile | Handbook | © IREB 53 | 126

Here is an example from our case study for a process triggered by a temporal event:

▪ Two weeks before the end of the subscription period it is time to remind students

about a possible prolongation.

If you want to write this feature as a user story, according to the template of Mike Cohn, you

have to identify the owner of the platform as the beneficiary.

▪ As owner of the platform I want an automatic reminder being sent to students two

weeks before the end of their subscription period so that students have the chance to

prolong access to the account.

3.3.2 The 3C model

As mentioned earlier backlog items are often written on index cards or sticky notes and

arranged on walls or tables to facilitate planning and discussion. This strongly shifts the

focus from writing about features to discussing them. In fact, these discussions can be more

important than the actual text written on the card or note.

Ron Jeffries [Jeff2001] summarized this aspect in his 3C model (Card, Conversation,

Confirmation) to distinguish the more social character of backlog items from the more

documentary character of other requirement notations. His ideas are explained in the

following chapters:

The “card” (an index card or a sticky note) is a physical token, giving tangible and durable

form to what would otherwise only be an abstraction. The card does not contain all the

information that makes up the requirement. Instead, the card has just enough space for text

to identify the requirement, and to remind you of it. The card is a token representing the

requirement. It is used in planning. Notes are written on it, reflecting for example priority and

cost. It’s often handed to the programmers when the backlog item is scheduled to be

implemented and given back to the customer when the backlog item is complete.

The “conversation” takes place at different moments and places during a project,

particularly when the backlog item is estimated (usually during release planning) and again at

the iteration planning meeting when the backlog item is scheduled for implementation. It

involves various people concerned with a given feature of a software product: customers,

users, developers, testers - and is largely a verbal exchange of thoughts, opinions and

feelings.

The conversation can be supplemented by other requirements, artifacts and

documentation. Good supplements are examples; the best examples are executable test

cases.

The “confirmation”: No matter how much discussion or how much documentation we

produce, we cannot be as certain as we need to be about what is to be done. The third C

provides the confirmation we need: the acceptance test.

The confirmation provided by the acceptance test allows us to use the simple approach of

card and conversation. When the conversation about a card gets down to the details of the

acceptance test, the product owner and the developers settle the final details of what needs

RE@Agile | Handbook | © IREB 54 | 126

to be done. When the iteration ends and the implementation team demonstrates the

acceptance tests running, the product owner learns that the team can, and will, deliver

what’s needed.

3.3.3 INVEST: criteria for "good" backlog items

In 2003, Bill Wake published an article [Wake2003] in which he advocated INVESTing in good

backlog items. We have already discussed the first three letters of that acronym in chapter

3.1: backlog items should be Independent of each other, they are Negotiable and they must

be Valuable for someone.

In order to be good enough for implementation by a developer, they also have to fulfill the

other three criteria: Estimated, Small enough to fit into the next iteration and Testable.

Estimation techniques will be discussed in chapter 5.

If the estimate shows that the backlog item is still too big to be implemented in one iteration,

it has to be broken up into multiple backlog items. Splitting techniques for backlog items are

discussed in chapter 3.4.

And, finally, as mentioned above in the chapter 3.3.2 about the 3C model, backlog items

have to include sufficient details about test cases or acceptance criteria (usually captured

on the back side of the card). This represents an agreement on the things that the

developers have to demonstrate to the product owner at the end of an iteration. See chapter

3.5.

3.3.4 Supplementing backlog items with other requirements

artifacts

As mentioned above, the backlog item on the card does not contain all the information that

makes up the requirement. It is just a physical token to foster communication among all

stakeholders and team members. Sometimes, it is very useful to use other requirements

notations and artifacts to supplement the backlog item on the card.

Feel free to use activity diagrams, BPMN, flow charts or data flow diagrams – in short:

everything you have ever used to visualize a business process or a flow of steps.

Example:

To better understand the backlog item “As a student I want to create an account for the

learning platform so that I can acquire Requirements Engineering knowledge everywhere”, you

could add the following activity diagram:

RE@Agile | Handbook | © IREB 55 | 126

Figure 11: Activity diagram explaining the details of the backlog item

3.4 Splitting and grouping techniques

In order to generate backlog items that are small enough to fit within a single iteration, larger

backlog entries may be split into more fine-grained ones (stories). A number of authors have

suggested patterns that can be applied for this purpose, ranging from reducing the feature

list to narrowing down the business variations or input channels [Leff2010].

One of the most extensive suggestions comes from Lawrence [LaGr1] and is presented in

the form of an easy-to-learn cheat sheet. According to Lawrence, you should ask yourself

the following questions to get to smaller backlog items or stories:

1. WORKFLOW: Does the story describe a workflow? If so, can you split the story in such

a way that you do the beginning and the end of the workflow first and enhance with

stories from the middle of the workflow later? Or, can you take a thin slice through the

workflow first and enhance it with more stories later?

2. MULTIPLE OPERATIONS: Does the story include multiple operations? (For instance, is

it about “managing” or “configuring” something? Can you split the operations into

separate stories?)

3. BUSINESS RULE VARIATIONS: Does the story have a variety of business rules? (For

instance, is there a domain term in the story like “flexible dates” that suggests several

variations?) Can you split the story in such a way that you can do a subset of the rules

first and enhance with additional rules later?

4. VARIATION IN DATA: Does the story do the same thing to different kinds of data?

Can you split the story to process one kind of data first and enhance with the other

kinds of data later?

5. INTERFACE VARIATIONS: Does the story have a complex interface? Is there a simple

version you could do first? Does the story get the same kind of data via multiple

interfaces? Can you split the story to handle data from one interface first and

enhance it with the others later?

6. MAJOR EFFORT: When you apply the obvious split, is whichever story you do first the

most difficult? Could you group the later stories and defer the decision about which

story comes first?

7. SIMPLE/COMPLEX: Does the story have a simple core that provides most of the

business value and/or learning? Could you split the story to do that simple core first

and enhance it with later stories?

RE@Agile | Handbook | © IREB 56 | 126

8. DEFER PERFORMANCE: Does the story get much of its complexity from satisfying

quality requirements like performance? Could you split the story to just make it work

first and then enhance it later to satisfy the quality requirements?

9. Last resort: BREAK OUT A SPIKE: Are you still baffled about how to split the story?

Can you find a small piece you understand well enough to start? If so: Write that story

first, build it, and start again at the top of the suggestions. If not, can you define the

one to three questions holding you back the most? Write a spike with those questions,

do the minimum to answer them, and start again at the top of the suggestions.

Note that even fine-grained stories should be defined in such a way that they deliver some

value for at least one stakeholder. Therefore, slicing a workflow into its individual steps is

often counterproductive, since implementing one or the other step may not deliver any

value. Therefore [Hrus2017] suggests rather decomposing a use case (or a large process)

into slices that go from end to end. This is based on Ivar Jacobsons idea about use case

slices [Jaco2011]. Figure 12 shows this idea in a graphical format.

Figure 12: Use case slices instead of process steps

Slicing can be done by different business objects or by technology. Then you can pick one of

the slices for early implementation and add others later. In addition you can shrink a slice by:

1. leaving out alternatives (for example first go for the normal flow, adding exceptional

cases later on),

2. leaving out options (for example leaving out things that are not absolutely necessary

to be implemented in an early release) or

3. leaving out steps that can still be done manually in early releases.

If you originally came up with stories that are too small to create business value (especially if

they are not independent and not valuable – thus violating parts of the INVEST principle) you

should combine some of them or otherwise reformulate them to get good, even if large,

starting stories.

Take a look at the following stories from our case study:

▪ As a student I want to enter my name and address so that I can create an account.

▪ As a student I want to add my email address to my account so that I receive a link to

the course.

RE@Agile | Handbook | © IREB 57 | 126

This is too low level for valuable stories since the business rule requires all this data to create

an account. Better to reformulate:

▪ As a student I want to create an account so that I get access to the video learning

platform.

Decomposition and grouping of backlog items will result in requirements hierarchies as

discussed in chapter 3.1. This hierarchy can be visualized as a two-dimensional story map

Figure 13, see [Patt2014]. Above the separation line, bigger groupings (like large backlog

items, epics and features) are aligned in a way that tells the complete story of the product.

This helps to maintain an overview of the requirements. Below the separation line one can

attach all lower-level details for the bigger groups and order them for assignment to sprints

and releases as in a linear backlog. In other words, the story map shows backlogs per feature

or epic while keeping the higher-level structure of the requirements intact.

Figure 13: The structure of a story map

3.5 Knowing when to stop

The product owner is responsible for continuing discussions with developers until both sides

have a common understanding of the requirements [Meye2014]. The Pareto principle can be

used in assessing when this point has been reached: requirements must not be defined 100%

perfectly, but well enough to address the team’s key questions and clear enough allowing for

the implementation effort to be estimated. Starting the implementation with too many open

questions may reduce development speed considerably and cause delays against forecasts.

For this level of common understanding, the Definition of Ready (DoR) [AgAl2024] was

defined. The definition of "Ready" is about creating clear criteria that a user story must fulfill

RE@Agile | Handbook | © IREB 58 | 126

before it is included in an upcoming iteration. " [AgAl2024] This is usually based on the

INVEST criteria, but can also include more than just the INVEST criteria (depending on the

team and company). However, we would like to point out once again that the Definition of

Ready does not only apply to user stories, but can apply to all types of backlog items.

A backlog item/ a story is “ready” if it fulfills the INVEST criteria6 [Wake2003]; this applies in

particular to the last three letters of the acronym:

▪ The developers have been able to estimate the story.

▪ The estimation is small enough to allow the story to fit into one iteration.

Lawrence suggests that the story should not only fit in one iteration, but it should be

so small that 6 – 10 stories can be assigned to the next iteration [LaGr1]. To achieve

this the product owner has to be aware of the velocity of the team. If for example the

team can handle 28 story points per sprint, then the user stories should be so small

that the sum of 6 to 10 stories does not exceed that value. The sprint backlog should

be composed of for instance 8 stories with 1, 1, 2, 3, 5, 8 and 8 story points and a clear

sprint goal should be formulated just in case the team cannot finish all the stories.

▪ The product owner provided acceptance criteria for the story. Based on the CCC

principle everyone agrees that there has been enough conversation and that the

criteria for confirmation of success in terms of acceptance tests were defined. If one

uses cards to capture the stories the acceptance tests are normally written on the

back of the card.

Product owners have a choice in case of a story that is already small enough to fit into one

sprint: they can keep that story and add more acceptance tests to the card. Or they can

choose to split the story into multiple stories, usually having less and more primitive

acceptance tests for each of them.

The closer the expected implementation of a backlog item comes, or the higher a backlog

item is prioritized in the backlog (see 5.3), the more precisely the requirement and the

acceptance criteria should be specified. Teams are constantly asking themselves how many

backlog items actually have to be completed in terms of the DoR.

▪ If a team specifies a large number of backlog items precisely, there is a risk that

unnecessary work will have been carried out. This is because requirements change over

time as a result of new findings or feedback from stakeholders.

▪ If a team specifies very few backlog items precisely, there may not be enough items to

fill a sprint, for example. Technical dependencies in particular often mean that

implementation cannot begin with any element, as no element is fully specified (in the

sense of the DoR) and at the same time not all technical dependencies have been

resolved. Often, elements are then selected "out of necessity" for implementation that

have little priority. Or low-priority bugs are fixed, which themselves hardly create any

value in terms of business value (see 5.1).

6 If the DoR consists exclusively of the INVEST criteria.

RE@Agile | Handbook | © IREB 59 | 126

So what is the right number of backlog items that are ready in the sense of the DoR? The

only correct answer is: The team decides! There are many dependencies: Who details the

backlog items (product owner, a dedicated requirements engineer, the developers, ...)? How

much time do the stakeholders have available to name requirements? How well do the

developers know the product? Can the time also be used more effectively if only a few

entries are finished in terms of DoR (e.g., with refactoring)? If it often happens that too few

items are finished in terms of the DoR, this may be an indication that the product owner

needs support, e.g., from an explicit requirements engineer.

Our recommendation is to have enough backlog items ready in terms of the DoR so that 2-3

iterations/sprints can be sufficiently filled. This is an amount that can be expected to ensure

that not much (perhaps) unnecessary work has been done, but at the same time the team

has enough to do to cope with unexpected technical dependencies or even a short-term

absence of the product owner.

Different styles are available [Beck2002] when formulating acceptance criteria. They can be

informal natural language sentences to be checked after implementation.

The acceptance criteria could be a little bit more formal using the Gherkin syntax

[WyHT2017]. Gherkin is a business readable, domain specific language created especially for

the description of behavior. It gives you the ability to remove logical details from behavior

tests.

Gherkin suggests the following structure for writing test scenarios:

▪ Scenario <<short descriptive name>>

▪ Given <<some precondition>>

▪ And <<some other precondition>>

▪ When <<some action by the user>>

▪ And <<some other action>>

▪ Then <<some testable outcome is achieved>>

▪ And <<something else we can check happens too>>

Some methods even advocate using Test Driven Development (TDD). Instead of using a

Domain Specific Language (DSL) like Gherkin you can formally code the test cases so that

they can automatically be executed after implementation [Meye2014]. This formal approach

– while very precise – may be hard to do and hard to understand for product owners and

business-oriented stakeholders.

For the product owner the DoR is the equivalent to the Definition of Done (DoD) of the

developers. The criteria defined in the DoD are used to determine whether a backlog item

has been successfully implemented. The DoR, on the other hand, defines that the developers

have enough information about a backlog item to complete it within one iteration ("done").

Discussing requirements with developers needs time and is best done prior to the iteration

planning. Planning can then focus on selecting the right backlog item and assigning these to

the responsible developers. Ideally, developers will have seen the requirements evolve, and

helped the product owner by asking questions and performing estimations.

RE@Agile | Handbook | © IREB 60 | 126

Different forms of refinements are possible. Refinement meetings may, for example, be a

more efficient way of performing refinement than repeatedly disturbing individual

developers. The product backlog refinement and all the surrounding activities consume time

from the overall iteration capacity.

The Scrum guide [ScSu2020] recommends a maximum of 10% capacity from the

developers for refinement: if more time than that is required, this is a warning sign for poor

quality of the requirements. A product owner should understand the relationship between

iteration length, risk and iteration overhead. He should also know that there are shorter

feedback loops than the iteration itself.

3.6 Project and product documentation of requirements

Projects and product developments in an agile environment, especially in Scrum, use a

product backlog, which is a prioritized list of the functionality to be developed in a product or

service. Although product backlog items can be whatever the team desires, epics, features

and stories have emerged as the most popular forms of product backlog items.

A product backlog can be thought of as a replacement for the requirements document of a

traditional project. However, it is important to remember that the written part of a backlog

item (e.g., user story "As a user I want to...") is incomplete until the discussions about this

backlog item have taken place.

It is often best to think of the written part as a pointer to a more precise representation of

that requirement. Backlog items/stories/epics/features could point to a diagram depicting a

workflow, a spreadsheet showing how to perform a calculation, or any other artifact the

product owner or team desires.

In the RE@Agile Primer [Prim2017] we have identified four different purposes for

requirements documentation.

Let us consider the first two purposes:

1. Documentation for communication purposes: Effective and efficient communication

is an important tool in Agile methods because of its interactivity and short feedback

cycles. In practice, there are several situations that may hinder direct verbal

communication: distributed teams, language barriers or time restrictions of those

involved. Furthermore, information is sometimes so complex that direct

communication may be inefficient or misleading. A paper prototype or a diagram of a

complicated algorithm can, for example, be re-read later on. Sometimes

stakeholders simply prefer written communication to reading source code or

reviewing software. In these cases, documentation facilitates the communication

process between all involved parties and the results of the process are stored.

The principle of creating documentation for communication purposes is: a document is

created as an additional means of communication if stakeholders or the developers see

value in the existence of the document. The document should be archived when the

communication has been successful.

RE@Agile | Handbook | © IREB 61 | 126

2. Documentation for thinking purposes: An often forgotten aspect of writing a

document is that writing is always a means to improve and support the thought

processes of the writer. Even if the document will be thrown away later in the process,

the benefit of improving and supporting thinking is lasting. For example, writing a use

case forces the writer to think about concrete interactions between the system and

the actors including, for example, exceptions and alternative scenarios.

Writing a use case can therefore be understood as a tool to test your own knowledge

and understanding of a system.

The principle for creating documentation for thinking purposes is: the thinker decides on the

document form that supports his or her thinking the best. The thinker does not need to justify

this decision. The document may be discarded when the thinking process is finished.

For the first two purposes a product backlog with epics and stories (in whatever form (cards

on the wall or backlog items captured in tools) and maybe augmented with sketches,

diagrams and prototypes) is sufficient as documentation to support the progress of product

development.

For the two other purposes, more formal requirements documentation must be considered.

3. Documentation for legal purposes: Certain domains or project contexts (e.g.,

software in the health care sector or avionics) require documentation of certain

information (e.g., requirements and test cases for a system) for a certain audience to

obtain legal approval.

The principle of creating documentation for legal purposes is: the applicable laws and

standards describe what legally necessary documentation has to be created. This

documentation is an inseparable part of the product.

4. Documentation for preservation purposes: Certain information about a system has a

lasting value beyond the initial development effort. Examples include the goals of the

system, the central use cases it supports or decisions that were made during its

development, for example to exclude certain functionalities. Documentation for

preservation purposes can become the shared archive of the team, of a product or of

an organization. It can reduce the dependency on the memory capacity of the

individual team members and can help discussions about previous decisions (for

example “Why did we decide not to implement this?”).

The principle of creating documentation for preservation purposes is: the team decides on

what to document for preservation purposes.

For these two purposes the product backlog – which is a tool for the interaction of a product

owner with developers – is not sufficient. The good news is that documentation for legal

purposes or for the preservation of product requirements know-how does not have to be

created upfront.

It can be updated and maintained every time a new version of the product is released, for

instance after the successful implementation of features. It therefore only contains the

documentation of functionalities, constraints and quality requirements that the product

RE@Agile | Handbook | © IREB 62 | 126

actually contains. This avoids time-consuming version and configuration management

activities on documents while stakeholders are still in negotiations and may change their

opinions.

Defining an adequate degree of documentation depends on many factors like the size of the

projects, the number of stakeholders involved, legal constraints, and/or safety-critical

aspects of the product. Based on these factors, teams in an agile environment try to avoid

documentation overkill and find a minimum set of useful documentation.

While working with a “living” product backlog is an efficient way to handle documentation, it

is not always sufficient. A structured up-to-date documentation of all requirements

implemented in a product may not only be a legal constraint in some projects but also a

perfect starting point for quicker identification of change requests based on existing

documentation.

3.7 Summary

Whatever your stakeholders tell you about required functionality is the right starting point for

requirements work. But it is the starting point only. Your job as product owner is to bring

structure into these functional requirements.

Epics, themes, features or large backlog items (representing potentially complex business

processes) are a good way to keep a big picture, an overview of all the things that your

stakeholders want from a system or a product. But you have learned that – by definition –

they may not be precise enough to stop at that level.

The goal for good requirements work is to come up with backlog items (especially stories),

that fulfill the Definition of Ready, or the INVEST criteria: they should be independent and

valuable, small enough to fit into one iteration, estimable and equipped with testable fit

criteria.

Mike Cohn's template “As a <role/person>, I want <goal/desire> so that <benefit>” is a good

starting point, but you shouldn't insist on using this formula in every case.

If a requirement (a backlog item) is still too large to fit into one iteration you have learned

several tactics to split them. Try to preserve independence and value as much as possible.

RE@Agile | Handbook | © IREB 63 | 126

4 Handling quality requirements and

constraints

Chapter 3 focused on handling Functional Requirements. Dealing with Functional

Requirements, meaning finding out what functionality the various stakeholders need, will be

the most time-consuming activity in system development and it will dominate most

discussions between product owner, stakeholders and the developers.

Qualities of (the functions of) the system, like performance, user friendliness, robustness and

extensibility are often taken for granted. Users and/or other stakeholders often assume that

they do not have to be stated explicitly since the developers already know about them.

The same is true of organizational and technical constraints. Doesn’t everybody know that

we have a standard process model, requiring certain artifacts to be produced? Isn’t

everybody aware that we always use company X to buy our database systems, and of

course will code in language Y?

Requirements Engineering experts have asserted the importance of these “non-functional”

requirements for decades. Even though the term “non-functional requirements” is still often

used in practice, as an umbrella term for quality requirements and constraints, IREB uses the

more concrete and precise categories “Quality Requirements” and “Constraints”, according

to [Glin2024].

Figure 14: Categorization of requirements

Figure 14 shows the three categories of requirements and some of their important

relationships. A quality requirement will never stand-alone, meaning that it will always refer

to one or more - or even all - functional requirements.

RE@Agile | Handbook | © IREB 64 | 126

Constraints are either product constraints, constraining the design of a function or a quality,

or process constraints, restricting the work of the developers in a way that is not directly

linked to the product itself, for instance certain process steps have to be performed or

certain artifacts have to be created.

Initially quality requirements and constraints are often deliberately vague. In the next

chapters we will describe how to capture such vague qualities and constraints. You will also

see how to transform vague quality requirements and constraints into more precise

requirements (down to the level of specifying precise acceptance criteria) and how to handle

them in conjunction with functional requirements.

4.1 Understanding the importance of quality requirements and

constraints

[Meye2014] expresses the concern that “many agile methods concentrate on functional

requirements only and do not put enough emphasis on qualities and constraints”. Bertrand

Meyer goes on to say: “Key constraints and some categories of qualities envisaged for the

system should be made explicit early in the lifecycle of a product, since they determine key

architectural choices (infrastructure, software architecture and software design). Ignoring

them or learning too late in the project may endanger the whole development effort. Other

qualities can be captured iteratively, just in time, as with functional requirements.”

While there are many categories of quality requirements to be considered, the task is made

somewhat easier for product owners by a number of published categorization schemata – or

checklists – such as those shown in the two following examples. As a product owner you

should simply use one of these “cheat sheets” to ask explicit questions about these qualities.

Even better: based on the available checklists you can create your own checklist to

emphasize the qualities that are most important in your domain.

In 2011 ISO published a new quality standards family, replacing the well-known ISO/IEC 9126

quality model from 2001. The most important standard for Requirements Engineering is

[ISO25010], defining quality requirements. Its latest update is from 2023. Figure 15 shows the

eight top-level quality characteristics of systems and their decomposition into sub

characteristics. Note that the standard does not talk about requirements, but about system

qualities.

Adding the word “requirements” to each category allows you to discuss your needs in this

area, for instance “capacity” becomes “capacity requirements”.

RE@Agile | Handbook | © IREB 65 | 126

Figure 15: Categories of qualities according to ISO25010

Detailed definitions of all these categories can be found in the standard. In addition to the

generic quality model the ISO/IEC 25012 standard [ISO25012]contains a complementary

model for data quality.

A similar categorization scheme for quality requirements can be found in the VOLERE

template [RoRo2017]. Chapters 10 – 17 of this template describe categories of quality

requirements. The categorization is based on decades of experience in system specification.

The original template adds the word “requirements” to every category, i.e. “longevity” reads

“longevity requirements”. In Figure 16 we have skipped this addition to keep the categories

more readable.

RE@Agile | Handbook | © IREB 66 | 126

Figure 16: Quality categories of VOLERE

In [RoRo2012] you will not only find definitions of all these categories, but also the reason

why they are important. You will also find examples of how to formulate them including

acceptance criteria.

The following example is taken from http://volere.co.uk/template.htm [RoRo2017]. Note that

acceptance criteria are called fit criteria in this publication.

11c. Learning Requirements

Content

Requirements specifying how easy it should be to learn to use the product. This learning

curve ranges from zero time for products intended for placement in the public domain (for

example a parking meter or a web site) to a considerable amount of time for complex, highly

technical products.

Motivation

To quantify the amount of time that your client feels is acceptable before a user can

successfully use the product. This requirement guides designers in understanding how users

will learn the product. For example, designers may build elaborate interactive help facilities

into the product or the product may be packaged with a tutorial. Alternatively, the product

may have to be constructed so that all of its functionality is apparent upon first encountering

it.

http://volere.co.uk/template.htm

RE@Agile | Handbook | © IREB 67 | 126

Examples:

The product shall be easy for an engineer to learn.

A clerk shall be able to be productive within a short time.

The product shall be able to be used by members of the public who will receive no training

before using it.

The product shall be used by engineers who will attend five weeks of training before using the

product.

Fit Criterion

An engineer shall produce a [specified result] within [specified time] when beginning to use

the product, without having to use the manual.

After receiving [number of hours] training a clerk shall be able to produce [quantity of

specified outputs] per [unit of time].

[Agreed percentage] of a test panel shall successfully complete [specified task] within

[specified time limit].

The engineers shall achieve [agreed percentage] pass rate of the final examination of the

training.

Suggestions for exercise:

Discuss for some of the categories shown in Figure 15 or Figure 16 whether the developers

should know about these requirements early on or if they can be considered later in the

development process.

4.2 Adding precision to quality requirements

Quality requirements have to be communicated to the developers in a way that is both

unambiguous and testable. As mentioned earlier, quality requirements are often very vague

at the beginning.

For example: The new mobile phone generation shall be attractive to teenage kids.

This quality requirement is neither unambiguous nor testable (in the way it is expressed), but

might nevertheless be the starting point for discussions about more detailed qualities

required for the next generation of mobile phones.

Its precision (or rather lack of) can be compared to a functional epic like “As a mobile phone

user I want intelligent dialing capabilities”. In chapter 3 we discussed how to bring such an

epic to the level of precision allowing for the developers to implement it.

In this chapter we will do the same for quality requirements. We will first explain how to make

quality requirements more concrete, down to the level of having acceptance criteria. Then –

in chapter 4.3- we will describe how and where to (physically) record or store them.

RE@Agile | Handbook | © IREB 68 | 126

There are two ways of adding precision and clarity to vague quality requirements. You can

either detail or decompose them, or you can derive more precise (functional) requirements

from the original requirement. Figure 17 graphically shows these alternatives.

Figure 17 Detailing and decomposing quality requirements

Detailing or decomposing takes the original vague quality requirement and replaces it with

two or more detailed quality requirements.

Example: Looking at the categorization schema in Figure 16, you could detail the usability

requirement (VOLERE category 11) “The system should be user friendly” with the following

two requirements:

▪ As a user I want the system to be easy to learn (VOLERE category 11c), and

▪ As a user I want the system to be easy to handle (VOLERE category 11a).

These two are still vague but already more precise than the original one.

The second alternative “deriving” means to transform the original quality requirement into

one or more (functional) requirements.

Take for example the original requirement: “As a security officer I want the access to the

following functions restricted to authorized personnel.”

Deriving more precise requirements means for example deciding that a login mechanism

with user name and password will be used to restrict the access.

Note that the original intention of the quality requirement was just to secure the access to

certain functions. It is a design decision to achieve this by introducing roles and passwords.

You could come up with other ideas, like locking away the computer in a room to which only

RE@Agile | Handbook | © IREB 69 | 126

authorized persons have access. Alternatively, you could decide to use fingerprints to

identify authorized users.

If you derive new functional requirements from original quality requirements you might want

to keep the original requirement, for instance to remember its origin, in case in future

versions of the product you discover more clever ways to achieve the original quality.

Deriving new functional requirements from required qualities brings you closer to a solution

or a fulfillment of that requirement.

Suggestions for exercise:

Pick one of your products and refine some examples of quality requirements.

Quality trees [ClEa2001] are also a proven way to structure quality requirements. A quality

tree combines the two techniques mentioned above. Figure 18 shows the generic form of a

quality tree. It starts with a root labeled “specific quality”. The next branches of the tree are

categories of qualities, followed by subcategories. The leaves of the tree show concrete

scenarios for a category or subcategory, for instance functional requirements or testable

quality statements.

Figure 18: A generic schema for a quality tree

RE@Agile | Handbook | © IREB 70 | 126

For our case study iLearn Figure 19 shows excerpts from a quality tree. Note the following

points:

▪ The leaves may still not be precise enough to be tested, for example: “usable without

training of students”. That is why quality requirements need acceptance criteria to

inform the developers about the expectations of the product owner.

▪ There is a very clear business decision in the requirement for “other languages”. The

product owner, together with all stakeholders, has decided that subtitles are

sufficient for marketing the product in other countries, rather than, for example,

dubbing the videos.

▪ There is even a design suggestion in the “adaptability” requirement: instead of just

asking that the system should work on various kinds or devices with different

resolutions, the product owner requests use of the corporate standard technology:

responsive design.

Figure 19: Parts of a quality tree for iLearnRE

Suggestions for exercise:

Try to brainstorm on a partial quality tree for one of your products. Make sure that you have

very concrete scenarios as leaves!

As mentioned earlier, quality requirements also need acceptance criteria to add more

precision. The type of acceptance criteria used will depend on the category of the quality.

The following table shows systematic advice on how to formulate acceptance criteria for

different VOLERE categories of qualities.

RE@Agile | Handbook | © IREB 71 | 126

Type of requirement Suggested Scale

10 Look & Feel Conformance to standard - specify who/how this is tested

11 Usability Amount of learning time

Amount of training

Test panel can perform functions in target time

12 Performance Time to complete action

13 Operational Quantification of time/ease of use in environment

14 Maintainability Quantification of portability effort

Specification of time allowed to make changes

15 Security Specification of who can use the product, and when

16 Cultural & Political Who accepts, quantification of special customs

17 Legal Lawyer’s opinion / court case

The following chapters provide examples of acceptance criteria for quality requirements.

More information can be found in [RoRo2012].

Usability Requirement: The product must be useable by a member of the public, who may

not speak English.

Acceptance Criterion: 45 out of 50 randomly selected non-English speakers must be able to

use the product within the performance criteria plus 25%.

Performance Requirement: The product must be acceptably fast.

Acceptance Criterion: Each transaction at the vending machine must take no more than 15

seconds.

Operational Requirement: As a worker I want to use the product also when outside in cold,

rainy conditions.

Acceptance Criterion: 90% of workers in the first month of use must successfully use the

product within the target time constraints.

Security Requirements: Only direct managers may see the personnel records of their staff.

Personnel records of staff may not be viewed by anyone else.

Acceptance Criterion: Recording the accesses and testing to see if a non-manager had

access. Alternatively, you might say that the product must be certified as conforming to the

xyz-security standard.

Legal Requirement: Personal customer information must be used in accordance with the

Data Protection Act.

RE@Agile | Handbook | © IREB 72 | 126

Acceptance Criterion: The legal department must agree that the product conforms to the

organization’s data protection registration.

Suggestions for exercise:

Pick two examples of quality requirements and add acceptance criteria to them.

4.3 Quality requirements and backlog

We discussed how to discover and elicit quality requirements and how to make vague quality

requirements more precise. Now we will discuss how to document them in an agile

environment in conjunction with a product backlog containing mainly functional

requirements. Depending on the kind of quality requirement, one or other of the following

approaches will work.

The easiest way to record a quality requirement is to attach it directly to a backlog item. This

approach only works if the quality is unique, meaning that it only occurs in this backlog item.

A second approach is to record quality requirements outside the backlog, either:

▪ On separate cards;

▪ As a quality tree.

In both cases, the quality requirements must be linked to all relevant functional

requirements. Depending on the tools used, this may be done either using hyperlinks or by

enumerating the functional requirements and the individual quality requirements targeted by

each quality.

The third alternative is to put quality requirements in the Definition of Done. Since the rules in

the Definition of Done apply to ALL iterations, you are indicating that you always want that

requirement to be obeyed, independent of which functional requirements you attach to the

next iteration.

If a team is working on several similar products at the same time or one after the other,

quality requirements can also be easily compared or transferred between the products. The

DoD may then look very similar to the parallel product or upstream product. However, never

make the mistake of adopting the DoD one-to-one without checking it. The team must

check very carefully whether the DoD criteria are also relevant for the current product.

If several teams are working on a product at the same time (see chapter 6), the question

always arises as to whether the DoD (and therefore also the quality requirements) is the

same across all teams. Please note how the teams are cut (see 6.1.2) and how the

requirements are cut (see 6.1.1). Both quality requirements and constraints may be relevant

across all parts of a product (e.g., the software should be able to increase its performance as

the number of users or volume of data increases), but some may only be relevant to certain

parts (e.g., the software should have comprehensive and understandable user

documentation). Here too, a DoD should not simply be adopted from another team or

product, but should always be checked to see which parts of it apply and are relevant to the

team in question.

RE@Agile | Handbook | © IREB 73 | 126

Quality requirements versus acceptance criteria

When structuring a backlog, product owners are often faced with the question of whether a

recognized/raised quality requirement is really a quality requirement, an acceptance criteria,

or perhaps also an acceptance criteria for a quality requirement. For this reason, we will

briefly discuss the distinction again here:

▪ Quality requirements refer to quality concerns that are not covered by functional requirements.

Such as performance, availability, maintainability, security or reliability (see [GLSB2024]).

▪ Acceptance criteria are criteria that a requirement (this can be a functional requirement as well

as a quality requirement) must fulfill in order to be accepted by the stakeholders.

We can see that both functional requirements and quality requirements can and should have

acceptance criteria.

But what about the question of whether something is a quality requirement or an acceptance

criterion? Let's take our example from before (see chapter 4.2): "As a user, I want the system

to be easy to handle". This is a quality requirement that affects several functional

requirements. Probably even a large part of the requirements of the entire system. In any

case, this quality requirement should be further detailed, for instance by using quality trees

(see 4.2) or by defining detailed acceptance criteria.

Compared with this statement: "The user should be able to start the video from the video

training overview with just one click.". This is a clear refinement of a single functional

requirement. That functional requirement, could be, for example: "As a user, I want to see an

overview of all video trainings so that I'm able to see which video trainings are available". The

"just one click" refers to one (or perhaps two) functional requirements. Means, this is not a

system wide quality requirement, but rather an acceptance criterion for that specific

functional requirement.

The simple distinction between a quality requirement and acceptance criteria is therefore

whether very many functional requirements are affected or only very few. However, this

distinction is not always clear from the outset. Much more important in practical work,

however, is not so much a clear distinction, but that the product owner is aware of what is

required by stakeholders and manages the requirements correctly.

4.4 Making constraints explicit

Constraints are an important type of requirements. Glinz defines constraints as

requirements that limit the solution space beyond what is necessary for meeting the given

functional requirements and quality requirements [Glin2024]. The product must be built

within the constraints. Constraints restrict what you are allowed to decide and thus influence

and shape the product.

They are either determined by your management or by other stakeholders outside your

scope of control, for example regulatory authorities, your parent company or an enterprise

architect.

Note that while many constraints are certainly legitimate, it is often worthwhile for the

product owner or developers to check their validity and to negotiate with persons or

RE@Agile | Handbook | © IREB 74 | 126

organizations that put such constraints on your development; to question their reasons and

motivations.

Sometimes you will discover that some of the constraints are pure traditions that – once you

question them and suggest alternatives - can be negotiated with the responsible

stakeholders and relaxed, allowing more flexibility in the implementation. So, in agile

terminology: Constraints may also be negotiable, in the same way as functionality. However,

if the other parties insist on these constraints, then the developers have to accept them.

In this handbook we have included legal requirements or (more general) any kind of

compliance requirements as categories of quality requirements (see chapter 4.1). They could

as well be included in this chapter on constraints since any solution has to have these

qualities. Compared to the other categories of constraints such compliance requirements

are often non-negotiable.

Figure 14 shows one way to categorize constraints: They can be classified either as product

constraints or as process constraints. Only product constraints refer to functional or quality

requirements of the product, thus limiting their implementation. Process constraints have no

direct relationship to the product. They put limits on the organization that develops the

product, or the development process used for the development of the product. Thus, they

have only an indirect effect on the product itself.

Figure 20 suggests some sub-categories for these two categories. Some examples are

discussed in the following text. More details about how to formulate such constraints, and

more examples, can be found in [RoRo2012].

The product constraints may ask for a given infrastructure, meaning a technological and/or

physical environment in which the product is to be installed. Other examples include the

mandatory use of off-the-shelf software (meaning a buying decision as opposed to

developing sub-systems within the project).

RE@Agile | Handbook | © IREB 75 | 126

Figure 20 Categorization of constraints

The constraint to reuse existing components or sub-systems of predecessor products or

other products the company developed is one that is often introduced. The reason for reuse

is obvious: you don’t want to spend money if you have acceptable (partial) solutions at your

disposal.

Constraints concerning the anticipated operational environment of the product describe any

features of the workplace that could have an effect on the design. Product designers should

know, for example, that the workplace is noisy, so audio signals might not work.

Conversely, where the product is intended to operate in quiet environments, the noise level

produced by the product should not exceed a certain level of decibels. If the workplace is in

the open air where it could be wet and cold, then users should be able to use the product

wearing gloves.

Similar for systems involving hardware elements, physical constraints such as those related

to the size or weight of the device – think mobile phones or other handheld devices – may

also be very relevant (meaning relevant to both the hardware design and to the software

which it is able to support).

The most common product constraints, however, limit the technology that the developers

are allowed to use.

RE@Agile | Handbook | © IREB 76 | 126

For example:

- As a enterprise architect, I want you to develop the product in C# so that our existing staff

can maintain the product.

- As a database administrator, I want the product team to use ORACLE so that we have

excellent hotline support for this product.

In general, constraints usually affect several functional requirements. This raises the

question of how the constraints (as well as the quality requirements) should be documented.

We have already explained the options in detail in the section 4.3. This means that the

constraints should at least be checked to see whether they have been met in the Definition

of Done.

Note that you do not have to write all constraints as backlog items. It may be sufficient to

inform the team that C# and ORACLE are non-negotiable constraints.

Process constraints are often called organizational constraints, since they constrain either

management aspects like budget, schedule or the skills of team members available for the

project (“You have to work with this team. We have no budget to hire additional staff and no

budget for external people.") or they enforce certain policies and regulations. You might

have to follow a development process that prescribes certain roles, mandatory activities to

be performed during development and a set of documents or other artifacts to be produced

and maintained.

Constraints, like other types of requirements, have a description: they can contain a

rationale or motivation describing why the constraint is in place. And they should also have

acceptance criteria – just as for functional or quality requirements.

If you have worked in an organization for some time, you are likely to have learned about the

technological preferences in the organization and you will be aware of organizational rules

and constraints. Nevertheless, it is important to make such constraints explicit so that

everyone else in the team is aware of them. The most limiting ones should be known early in

the project. Others should be captured as soon as they are discovered.

Such constraints are normally applicable to a wider range of projects. Basic technology

stacks, as well as process models, are normally set for a longer period in a company. So as

soon as these constraints are captured, they can easily be reused in different product

developments.

4.5 Summary

Quality requirements and constraints are as important for project success as functional

requirements. For a product owner it is not difficult to find relevant requirements in these

categories since there are many checklists available in the public domain, suggesting

categories for qualities and constraints.

Quality requirements may start out vague. Before being ready for development they have to

be made more precise, down to the level of acceptance tests – just as for functional

requirements.

RE@Agile | Handbook | © IREB 77 | 126

Adding precision to quality requirements is often achieved by deriving corresponding

functional requirements that fulfill the originally required qualities. Make sure such decisions

are recorded, and that the original quality requirements are not discarded, since over time

you might discover better ways to fulfill the qualities.

Some quality requirements can simply be attached to already discovered backlog items, for

example adding performance or special security aspects to individual functions. Many

quality requirements concern crosscutting aspects, meaning they are relevant to many of

the functional requirements.

We suggest that you include these overarching quality requirements in the Definition of

Done, as the DoD specifies all aspects which must always be fulfilled.

A similar approach can be taken for technical, organizational and legal constraints. Make

sure they are explicitly known to the developers. If they are not project specific, but more

general company rules, you can maintain them in a central location for all projects thus

reusing them over many development projects.

RE@Agile | Handbook | © IREB 78 | 126

5 Prioritizing and estimating requirements

Agile approaches aim to maximize the overall business value over time and to permanently

optimize the overall business value creation process [Leff2010]. This constant value adding

process is shown in Figure 21. Every iteration should result in added value – sometimes more,

sometimes less.

Figure 21: Agile development = constant value creation

Every iteration is supposed to deliver a potentially releasable product increment that

increases the value of the overall product. (Comment: some versions of Scrum and other

agile approaches refer to a “potentially shippable product” or “potentially usable product

increment”).

[LeSS] explains this goal as follows: “Potentially shippable is a statement about the quality of

the software and not about the value or the marketability of the software. When a product is

potentially shippable then it means that all the work that needs to be done for the currently

implemented features has been done and technically the product can be shipped. However,

this does not mean that the features implemented are valuable enough for the customer to

want a new release. The latter is determined by the product owner.”

When planning for and achieving this constant addition of value, all requirements (whether

coarse or fine) should be ordered primarily based on the added value they can bring to the

business. But business value can mean many different things to different organizations.

Clarifying this term “business value” is one of the core topics of this chapter and will be

discussed in chapters 5.1 to 5.3.

Of course, creating value has to be balanced with the effort to create it and the moment in

time when the value will be delivered. Therefore, the developers have to support the product

owner with estimates about the efforts needed to create the business value.

Estimating backlog items is the second core topic of this chapter and will be discussed in

chapter 5.4. Based on the value/effort ratio the product owner can select the backlog items

that should be taken on by the developers in the next iteration.

https://less.works/less/framework/product-owner.html

RE@Agile | Handbook | © IREB 79 | 126

5.1 Determination of business value

As mentioned above “value” can mean many different things in different environments. Here

are some aspects to be considered when establishing business value and when putting the

backlog items in order by that value.

▪ Value to the customer or other stakeholders

If you develop a product for a specific customer or client, the opinion of this client

about what is more important and what is less important will definitely influence when

you pick backlog items. Not every stakeholder will consider money as a criterion for

value. Value for Greenpeace for instance could be anything good you do to protect

the environment. So, whatever your customer or important stakeholder values most

will be considered.

▪ Value to the organization

Despite having specific clients that will use or buy the product the organization itself

might (or should) have strategic goals it wants to achieve, for instance create a

reusable platform for a given domain, so that future individual projects can be

delivered quicker and cheaper. In fact, any kind of optimization and automation of

internal business processes can be a driving force for creating value for the

organization. If the backlog items are strongly related to such strategic goals, then

their business value will be considered as very high.

▪ Threat to existence

Not having or offering a certain feature or functionality can be a threat to the product

or the overall organization. Typical examples of such threats are legal requirements

(for instance data protection). Such a feature may not add business value in a

commercial sense, but it must be implemented to ensure to the further existence of

the product or the company.

▪ Expected financial value of a feature (sales volume, total revenue, return on

investment)

Most commercial organizations’ goal is to make money (profit). So, backlog items will

naturally be ranked higher if they promise more sales or a quick return on investment.

▪ Short-term project goals or release goals (versus mid-term product goals)

Sometimes it is important to be able to demonstrate features or at least mockups of

features at an upcoming trade show or an important presentation. Therefore, product

owners may value such results more than those that contribute to the longer-term

product strategy. On the other hand, an organization may want to invest in a

development framework that does not immediately create business value but

reduces long-term development costs and improves the value-add ratio for

upcoming product increments.

▪ Costs of delay

This is a very interesting criterion to use for determination of business value. The key

question is: What is the cost of a delayed shipping of a backlog item? A new feature

for an online shopping portal is supposed to increase sales volume by 500,000 US

dollars per month. So if this feature is delayed for one month, this means a loss of

RE@Agile | Handbook | © IREB 80 | 126

500,000 US dollars for the company. Reinertsen [Rein2008] considers cost of delay

as a point of view that can summarize all the other aspects mentioned in this chapter.

▪ Time to market

Certain features may come with a window of opportunity. For example: If this feature

is available within this period, then it will create a significant increase in business. If it

comes too late the value might be significantly lower. For example, trade shows are a

good opportunity to sell new products to the market. If the product is not ready when

the trade show opens, then the customers may buy another product and will have no

need to buy the product in the near future even if the product has more and better

functionality. Some methods therefore suggest putting an attribute on each backlog

item specifying “best before”. This way every stakeholder explicitly knows about the

window of opportunity.

▪ Requirements frequency

If you develop a product for a mass market it may be important to get an

understanding of the demand when determining the business value. Did many

customers ask for it? Or was it just a small group? How much revenue do you expect

to make based on the number of customers that requested the feature?

▪ Business dependencies and technical dependencies

Sometimes you have to prioritize a backlog element because it is a prerequisite for

one or more other backlog items, meaning the other items cannot be developed if this

one is not available. An example in the iLearnRE case study: The development of a

user account does not create business value. However, you cannot develop

personalized features if you have not yet developed the user account. These

dependencies could also be technical dependencies, for instance developing a

feature requires the establishment of a certain infrastructure or certain tools have to

be bought and explored before you can deliver the feature. These prerequisites

(features) will not create business value, but without having these prerequisites done,

you cannot develop the really valuable backlog items.

Also, some of the qualities might be considered to have high value. You might prioritize

backlog items that for instance:

▪ Improve usability

▪ Improve robustness

▪ Reduce maintenance costs

▪ Minimize impact on the current system

Working on such quality improvements does not often create new sellable features, so they

don’t create direct revenue. But they may be considered to be very important by certain

groups of stakeholders and therefore be high in the ranking of backlog items.

The delivered value can only be measured on the side of the end user because the end user

of the product will decide if they want to use (and buy) the product and if they will

recommend the product to other potentially customers. As a result of this the revenue of the

producing company may increase.

RE@Agile | Handbook | © IREB 81 | 126

If it is an internal customer, no revenue can be measured.. In this case, typically the value of

the delivered product increments is determined by rating the delivered product increment

and the resulting product version sprint by sprint and comparing it to the product roadmap

based on the planned and delivered features and product capabilities.

5.2 Business value, risks, and dependencies

An important criterion to prioritize backlog items is that some are riskier than others.

[DeEa2003] gives a cyclic definition of risks and problem:

▪ A risk is a potential problem.

▪ A problem is a risk that has manifested itself.

There are many categories of risks in product development. The feature itself could be risky,

because for example it may not be accepted by the target audience. The risk could be in the

implementation of a feature, for instance if the team wants to use certain technology

whereas not all team members are proficient with the technology.

Or the risk could be in the technology itself, which may be too new (and therefore dangerous

to use) or too old or outdated. For a comprehensive overview of risks, especially the five

main risks that impact every IT project, we refer to [DeEa2003].

Maybe the risky backlog items don’t deliver high business value based on the criteria defined

in the last chapter.

But if you want to handle the risks in order to avoid surprises later on, then you may want to

pick backlog items that come with a risk early on in the development process. Once you

dealt with those items the rest of the work is less risky.

There are four alternatives you can choose from when you have risky backlog items:

1. Avoid the risk: This means not handling backlog items that are risky. Avoiding such

items implies missing out on the opportunities associated with the items. So avoiding

should not be your choice in dealing with risky items.

2. Mitigate risks: As a manager you can put money and/or time aside to handle risks as

soon as they become problems. As a product owner (responsible for Requirements

Engineering) you may therefore postpone the detailed study of such items until they

become important for the business.

3. Reduce risks: besides mitigation this is your second obvious choice to deal with risky

items. But this means to take actions now in order to reduce the risk. You typically

break down a risky item into smaller items (for example spikes) that allow you to learn

more about their risky parts. For instance, you develop a UI-prototype to ensure that

the target audience will accept it, or you develop a prototype to gain experience with

a new framework.

4. Hope that the risk does not turn into a problem. Similar to the first alternative this is

not a feasible choice. Imagine that you have twelve risks with a probability of only ten

percent each. Mathematics shows that the chance that one of these will hit you is

already 75 percent.

RE@Agile | Handbook | © IREB 82 | 126

As a product owner you only want to go for alternatives two and three. From a requirements

point of view alternative three is the most important one. You have to find ways to

decompose a requirement in a way that reduces the risk. Sometimes you might study a spike

or develop a prototype to reduce the risk before moving towards actual feature

development.

[DeEa2003] concludes: “The real reason we need to do risk management is not to avoid

risks, but to enable aggressive risk-taking.”

Suggestions for exercise:

Discuss what (combination of) criteria are used in your organization to determine (business)

value.

5.3 Expressing priorities and ordering the backlog

Once you have determined what value means to you, you have to express these priorities

and order the backlog according to the priorities given to the backlog items. There are many

different methods to assign value to backlog items. Some of them very simple, others are

highly complex. In the following chapter we will discuss popular approaches.

One method is to use MoSCoW. This prioritization method was developed by [ClBa1994] to

reach a common understanding with stakeholders on the importance they place on the

delivery of each requirement. The term MoSCoW itself is an acronym derived from the first

letter of each of four prioritization categories (Must have, Should have, Could have,

and Won't have). With two o's in between, the word can be pronounced.

The categories are typically understood as:

▪ Must have: Requirements labeled as Must have are critical to the current delivery time

box in order for it to be a success. If even one Must have requirement is not included,

then the project delivery should be considered a failure (note: requirements can be

downgraded from Must have, by agreement with all relevant stakeholders; for

example, when new requirements are deemed more important).

▪ Should have: Requirements labeled as Should have (should be present) are important

but not necessary for delivery in the current delivery time box. While Should have

requirements can be as important as Must have, they are often not as time-critical or

there may be another way to satisfy the requirement, so that it can be held back until

a future delivery time box.

▪ Could have: Requirements labeled as Could have (may be present) are desirable but

not necessary and could improve user experience or customer satisfaction for little

development cost. These will typically be included if time and resources permit.

▪ Won't have (this time): Requirements labeled as Won't have (will not be present) have

been agreed by stakeholders as the least-critical, lowest-payback items, or not

appropriate at that time. As a result, Won't have requirements are not planned into the

schedule for the next delivery time box. Won't have requirements are either dropped

or reconsidered for inclusion in a later time box.

RE@Agile | Handbook | © IREB 83 | 126

A simpler schema for expressing priorities could be to use three categories (instead of the

four of MoSCoW), labeled H(igh), M(edium) and L(ow) or alternatively A, B and C.

Figure 22: MoSCoW or high/medium/low priorities

Figure 22 shows a backlog where the items are annotated with high, medium and low or

MoSCoW. Note that the higher the value given to the requirement the more detailed it should

already be described, since it is a potential candidate for the next (or one of the next)

iteration(s).

Some companies use a range of numbers between 1 and 100, interpreting it in a way that a

higher number means more business value. Thus, you can express bigger differences for

instance by giving priority 87 to one backlog item and 38 to another, clearly indicating how

much more important the item with priority 87 is.

Figure 23 shows a range of numbers given to smaller or larger backlog items. Note, that if a

mid-sized item has value 95 or a large epic has value 76 like in the figure below this is a clear

message to the product owner to start working on that item to bring it to the Definition of

Ready, so that such important items can be handled in a near-term iteration.

RE@Agile | Handbook | © IREB 84 | 126

Figure 23: Using a range of numbers to indicate business value

The simplest way is to sort all backlog items in a linear sequence (that is putting story cards

in a row from left to right). The further left the more important the backlog item is considered

to be. The further right you put it, the less important this item is considered to be. This is

shown in Figure 23.

Figure 24: Linear sorting by business value clusters

Note that only the leftmost items have to be clearly linearized since the developers will pick

them for the next iteration. The further to the right an item is placed, the less important is its

RE@Agile | Handbook | © IREB 85 | 126

exact position. So, you can put clusters of items on stacks without explicitly deciding their

exact value.

The product owner has time for refinement before they are picked for implementation. Do

the sorting from left to right quickly and only concentrate on those items that promise high

business value.

Of course, you could apply much more complex algorithms to determine value. You can for

instance pick a couple of criteria mentioned in chapter 5.1 and assign a weight to each of

them for balancing the values relative to each other. You can then individually rank product

backlog items within each criterion and calculate the resulting value. Figure 24 demonstrates

this with three criteria and a ranking from 0 to 5 within each criterion. As you can see

requirement 3 turns out to be the most valuable one based on that combinatorial approach

of revenue, risk and usability.

Figure 25: Calculated business value based on multiple criteria

When prioritizing the backlog items, it should generally be considered that the closer the

time of the planned implementation of a backlog entry comes, the clearer the priorities of

the selected entries should be. A prioritization with the criteria "high", "medium", "low" (see

Figure 22) often results in a far too large number of backlog items receiving the value "high".

For example, if 30% of all backlog items are assigned a high priority, the result is that

developers do not know what is most important to the product owner. It also indicates that

the product owner does not have a clear strategy for short to medium-term implementation.

The goal of prioritization should always be to make a clear statement about what

stakeholders can expect as the value of the product in the near future.

Some teams and companies go so far with the priority that the backlog has a clear priority.

This means that there is a clear order of the backlog items, with the top element being the

most important, the second element being the second most important, and so on. There are

therefore no two (or more) backlog items in one place, but each backlog item has a unique

priority. This requires a great deal of discipline in order to establish a clear sequence and is

RE@Agile | Handbook | © IREB 86 | 126

time-consuming, especially with a large number of backlog items. However, this effort leads

to the advantage of concentrating on the relevant and valuable elements first.

Our recommendation is that the priority of the backlog items (as well as the resulting

detailed description) should be clear for the next 2-3 sprints. This means that a short to

medium-term roadmap can make clear statements. Clear prioritization can also eliminate

many misunderstandings in advance as to which backlog items the developers select next

for implementation (pull principle, see also [MaRo2021]). The further back elements are in

the backlog, the more vague the prioritization can be.

5.4 Estimation of backlog items

For the product owner this chapter is for information only. You are responsible for

determining the order of the backlog items based on value and risk as discussed in the last

chapter. It is the task of the developers to come up with estimates for each backlog item.

Product owners should not influence the estimation process, but they must know the results

in order to use them for backlog management.

Even in a perfect agile world, forecasts are useful and valuable (if applied properly) in order

to determine how much work can be “done” within a previously specified iteration (time box).

No non-estimated element is allowed to enter a sprint in Scrum for two reasons [Cohn2006]:

1. It is not clear if the element can be completed within the sprint. As a results, the

software may not be working at the end of the sprint.

2. Without discussion and estimate, the team will have no reference point (planning vs.

actual doing) for future learning with regard to upcoming sprints.

Most people dislike estimating. Many organizations have used inaccurate estimates against

their employees in the past. If your estimate was too high, then you could be seen as being

too defensive or too anxious. If your estimate was too low, then you could be challenged why

you didn’t see the real efforts behind the work that had to be done.

Agile organizations try to overcome these problems by establishing a different kind of

estimation culture. A culture that helps avoiding finger pointing. The principles of this culture

will be discussed in this chapter.

First and foremost, a reason for having better estimates is the use of short iterations in agile

development. It is much easier to give more precise estimates for the next two to four weeks

compared to estimates for quarters or for years. Through continuous product development

and estimation at shorter intervals, experience is also built up, which in turn leads to

better/more accurate estimates.

Of course, development organizations that work on large projects with multiple teams also

need forecasts in order to prioritize and plan work properly. Large scale estimating and

planning will be discussed in more detail in chapter 6. In this chapter we will concentrate on

the basics and the short-term estimating, for example estimates for the next couple of

iterations.

RE@Agile | Handbook | © IREB 87 | 126

The recommendations (good practices) for successful estimates in an agile environment can

be summarized as follows:

1. Everyone involved in the estimation process must have the same understanding of

the work that needs to be “done”. This is achieved by involving the developers in the

product backlog refinement. Developers assist the product owner in refining unclear

epics features and stories or any kind of requirements on those levels of granularity,

thereby gaining more insight into the work to be done. This gives them a deeper

insight into the work to be done. Creating such a common understanding of what

“done” really means in this context avoids typical estimation pitfalls (forgetting about

efforts needed for documentation, testing or rollout preparation).

2. Estimates are done by those doing the work, usually the cross-functional developers.

This helps to bring all involved people on the same level of knowledge by exchanging

knowledge and sharing assumptions about the work to be done. Of course, you have

to consider a tradeoff between involving all team members in the estimation process

and involving only some of them. Involving all means everyone is part of the process

and therefore feels committed to the outcome. But this might take a lot of time that

could otherwise be spent on developing features. If only a few developers participate

in the estimation process, then the others may not feel committed. A good practice is

to invite the whole team and let the team decide who is really needed to estimate. In

all cases estimating should be done by groups and not by individuals. Later in this

chapter we will suggest techniques to speed up estimating.

3. Estimating should be done relative to work already done or, in the beginning, relatively

to small work everyone involved can agree on. Estimating by analogy or affinity is

likely to be more accurate than absolute estimating. Looking at Figure 26 it is easy to

state that the rock on the right is more than twice the size compared to the rock on

the left. It would be much harder to estimate the exact size or weight of the two.

Relative estimates offer enough precision for planning.

Figure 26: Relative estimates

4. Estimates should be done using an artificial unit (usually called story points) that

represents the unity of effort, complexity and risk in one. Using an artificial unit like

RE@Agile | Handbook | © IREB 88 | 126

story points is necessary to make everyone familiar with the new way of estimating

and the associated culture and move away from the traditional behavior.

The basis for relative estimates is the principle of "affinity estimation" ("similarity" or

"comparative estimation" with the help of known or easily determinable comparison objects

and the relations (factors) between them - hence the name "relative estimation". Several

implementation techniques are available for relative estimates. The best-known techniques

are the T-shirt estimation or the so-called Planning Poker [Cohn2006] or the "Magic

Estimation" based on it.

For all of these techniques it is necessary to first agree on a reference item (or reference

story). Let us assume the apple in Figure 27 is the chosen reference. Now you can estimate

the size of all other fruits compared to that apple. Are they approximately of the same size?

Are they much smaller? Or much bigger? By what factor, for example?

Relative estimates remove the fear amongst the developers that they have to be exact.

The Planning Poker and the Magic Estimation use numbers, the T-Shirt Estimation uses

clothing size designations. The size indicators of T-shirts range from extra small to extra

large (XXS, XS, S, M, L, XL, XXL). Let us illustrate this using the example of our fruit overview:

Think of a subsets XS, L and XXL as demonstrated in Figure 27. Of course, a cherry is larger

than a blueberry, but both are definitely smaller than apples or oranges. And melons are

definitely bigger than oranges, which are similar in size to apples. This grouping of

proportions, similar to a rough estimate, takes us a step further.

Figure 27. Reduced T-Shirt Sizing

Planning Poker or Magic Estimation makes it more precise. In both, the developers estimate

the backlog items based on a set of cards with numbers inspired by the Fibonacci sequence,

representing relative sizing (cf. Figure 28). Based on these ratios between the available

figures, we already arrive at a more precise result. At first we get a series of inequalities with

RE@Agile | Handbook | © IREB 89 | 126

variables, but as soon as one or more of the variables are known or can be determined more

precisely, all (in)equations are solved one after the other.

The difference between Planning Poker and Magic Estimation then lies in the application, the

procedure for determining the inequalities.

Let's first take a look at the Planning Poker procedure:

▪ First, the developers agree on one medium sized reference requirement (often also

called a reference story), for example 5 story points, then the team decides on the

size of other backlog items with respect to the reference requirement. For this

purpose, a set of playing cards or a corresponding app is used with which each

participant can express their view of things (factor in relation to the reference

requirement).

▪ After everyone has chosen a poker card face down, the cards (or the app) are

revealed to the team (simultaneously) on command.

▪ Now everyone looks at the values. In the first estimation round, it is normal for the

values of the participants to vary widely. As long as there is no agreement in the team,

the team members with the lowest and highest cards discuss the rationale and

assumptions behind them. There is no attempt to convince in any case. It should as

well be avoided talking about the numbers themselves. The numbers result from the

assumptions, which are therefore the central topic of discussion.

▪ Then the next estimation round is started. If the team cannot agree on one common

value within three rounds, then the requirement is sent back to the product owner for

clarification. This is based on the assumption that the requirement is not clear enough

to be estimated. If only two neighboring numbers remain in a round, a rule that the

team has previously defined for this case can be applied. Inexperienced or less

experienced teams will always be well served by choosing the higher number, while

experienced teams tend to decide on a case-by-case basis.

What do the numbers on the cards mean on closer inspection? First of all, the numbers

represent the factors among each other. The backlog item with the next highest number is

less than twice as large, complex and risky as the backlog item with the comparison number.

In addition, the very large and very small numbers have a further significance:

▪ For the upcoming iterations you may want to be in the range between 2 and 13. A

“20”, “40” or “100” is an indication for the product owner to refine that item. These

numbers to not literally mean “20”, “40” or “100”, but “too large”, “much too large”

and “enormous” – but they are at least indicators for “how much too large” compared

to the items between 1 and 13.

▪ The number 1 means that the requirement probably requires very little

implementation or testing effort, but is not negligible either, especially not in total.

Usually the “0” present in the Planning Poker card sets means: “Stop talking, this is

not a relevant effort and it is not worthwhile to include in the plan."

▪ Unfortunately, the use of numbers can tempt you to add them up or treat them

mathematically in some other way, which makes no sense from a technical point of

view. To make this visually clear from the outset, you can also use their counterparts

RE@Agile | Handbook | © IREB 90 | 126

in the form of T-shirt or dress sizes instead of the numbers. In principle, this enables

the same statement to be made, but prevents the results from being treated

mathematically.

Figure 28: Planning Poker cards

The advantage of Planning Poker is, that it is a very good technique for new and

inexperienced teams to find their estimates because it avoids anchoring by single team

members. The disadvantage is that it is very time consuming.

Hint: The book „Thinking, Fast and Slow“ from D. Kahneman [Kahn2016] gives a great

introduction into anchoring and other psychological effects related to thinking and judgment.

As teams become more experienced, the Planning Poker technique comes with one

drawback: the time required for estimates per request. A simplification of the planning poker

technique that aims to mitigate this disadvantage is the so-called "Magic Estimation". It is

based on the same principles as Planning Poker, but uses a different method of determining

the correct estimate. Instead of every team member doing a personal estimate one set of

poker cards is spread across a table and the reference requirements are placed in the

corresponding “container” represented by the poker card.

Afterwards the requirements are selected by the team members in a round-robin approach

where the team members are allowed either to place a new requirement in the

corresponding “container” or reassign one already placed requirement in a different

container. If one requirement is reassigned a number of times, then it will be removed and

send back to the product owner (insufficient maturity - analogous assumption as for

Planning Poker). This approach is much faster but needs a team that is experienced enough

to disagree with assignments done by other team members instead of easily agreeing

(“anchoring”).

If you don't need it so precisely or would like to have a really large number of requirements

roughly estimated in a short time, you can scale the "Magic Estimation" again. This

RE@Agile | Handbook | © IREB 91 | 126

procedure is then referred to as "Wall Estimation". It is used when estimating larger numbers

of requirements for example for rough estimates in preparation of release planning.

Different to the previous approach, the requirements will not be assigned by round-robin

approach, but every team member receives a number of requirements and assigns it silently

to the “containers” represented by the poker card set (cf. Figure 29). After the silent

assignment, all involved are allowed to inspect the assigned requirements and mark those

that are questioned. Usually this leads to a quota of 20-30% requirements that need to be

discussed and 70-80% that are accepted by all team members.

The elements to be discussed are then discussed in the team and, if necessary, reassessed

with the help of Planning Poker.

Figure 29: Wall Estimation or Affinity Estimation

Some final remarks about estimating:

The estimation process within a team is an evolutionary process. It evolves as the teams gain

experience from the results of completed iterations as to how good their estimate was or

what they had not taken into account. Typically, the estimates become more accurate over

time or take more and stricter criteria into account in the Definition of Done (DoD). The DoD

forms the basis for the comparative estimation of requirements as it defines which activities

must be carried out in the same way for all requirements in order to convert the requirement

into a potentially deliverable product increment. Typically, a DoD includes elements /

activities from the areas of analysis, design, development, testing and documentation.

Based on these activities, different requirements can be compared with each other and thus

estimated in a comparative manner. If the DoD now changes due to the team's experience,

the basis of the estimate also changes, and it may even be necessary to update, i.e. repeat,

estimates that have already been made. Relative estimates have many advantages and

work well within one team (as discussed earlier). However, they also have some

disadvantages when it comes to cross-team estimates. This will be discussed in chapter 6

(Scaling).

RE@Agile | Handbook | © IREB 92 | 126

Suggestions for exercise:

Pick a case study and use a quick way to estimate the size of the backlog items. Discuss your

findings, especially discuss what did work and what did not work when estimating.

5.5 Choosing a development strategy

Different strategies can be applied when selecting what should be picked for early releases,

based on known value, risk and effort needed to develop a backlog item. Two concepts are

typical for agile development: developing a minimum viable product (MVP) and developing a

minimum marketable product (MMP).

Minimum Viable Product

A minimum viable product is the version of a new product that allows a team to collect the

maximum amount of validated learning about customers with the least effort. The term was

coined by Frank Robinson in 2001 and popularized by Steve Blank, and Eric Ries [Ries2011].

Gathering insights from an MVP is often less expensive than developing a product with more

features. Developing a product with more features will increase costs and risks if the product

fails, for example, due to incorrect assumptions.

The MVP is a key idea from the Lean Startup methodology developed by Eric Ries, which is

based on the Build-Measure-Learn cycle (see Figure 30).

Figure 30: The “Build-Measure-Learn” cycle of lean development

An MVP is therefore a vehicle for learning that enables you to test an idea. This allows you to

quickly offer the desired stakeholders something tangible and gives you the opportunity to

collect data and derive insights about your target market.

Roman Pichler [Pich2016] observes that “The MVP is called minimum, as you should spend

as little time and effort to create it. But this does not mean that it has to be quick and dirty.

http://startuplessonslearned.blogspot.com/2009/04/validated-learning-about-customers.html
https://en.wikipedia.org/wiki/Steve_Blank

RE@Agile | Handbook | © IREB 93 | 126

How long it takes to create an MVP and how feature-rich it should be, depends on your

product and market.

But try to keep the feature set as small as possible to accelerate learning, and to avoid

wasting time and money–your idea may turn out to be wrong!”

The MVP is not necessarily a deployable software product. Sometime paper prototypes and

clickable mockups can be used to derive insights as long as they help to test the idea and to

acquire the relevant knowledge.

For the iLearnRE system an MVP could be just publishing intro and summary videos for each

learning goal to gain insights about user behavior and UI acceptance.

Minimum marketable product

The next step should be to create a minimum marketable product (MMP). It is based on the

idea that less is more: The MMP describes the product with the smallest possible set of

features that addresses the needs of the initial users (innovators and early adopters) and can

hence be marketed. Studies have shown that most of our software products contain many

features that are never or very seldom used. So, it seems common sense to concentrate on

features that are popular for the majority of your stakeholders and delay features that are

not considered so popular. To discover these features is not straightforward, but MVPs are

an excellent way of achieving this goal. Maybe some of your MVPs are throwaway

prototypes created for learning purposes only. But if you do it properly you will develop them

in a way that they can be reused or morphed into the first MMP.

If you combine these two concepts you have a strategy that is shown in Figure 31. Develop a

couple of MVPs to test the market and get real data as feedback. Then decide on the

minimal number of features a product has to have in order to be useful for at least a key

group of your stakeholders. Then you continuously add features that promise more business

value.

Figure 31: Combining MVP and MMP

Risk reduction

The development of MVPs is very close to the idea of a risk reduction strategy. Most often

MVPs are developed to reduce the risk of having the wrong features for your stakeholders.

But you can also create MVPs (or spikes) to reduce technical risks. It is better to fail fast

(either in functionality or in technology) than to develop a full-fledged product and then find

out it is not successful in the market.

RE@Agile | Handbook | © IREB 94 | 126

In our iLearnRE case study testing the performance of the planned video platform under

load can be a feasible early version.

Low hanging fruit or quick wins

The opposite of a risk-driven strategy is to go for "low hanging fruit" first. Start by publishing

features that are easy and quick to implement. This allows you to generate sales and earn

money early on, allowing you to invest in more complex features. But beware of postponing

risky parts since they may ruin the architecture of a product based on low hanging fruit.

The warning of Professor Kano

Professor Kano conducted studies about customer satisfaction in relation to features

delivered. As already included in the CPRE Foundation level syllabus [IREB2024] you should

be able to distinguish three categories of requirements: basic factors (also known as

dissatisfiers), performance factors (also known as satisfiers) and excitement factors (also

known as exciters or delighters).

Kano warns that every successful release of a product should include features from all three

categories. When you constantly only provide basic factors, your customers will not be very

happy. You have to include some performance factors, for instance features that customers

explicitly ask for even if they are not absolutely necessary. And you should also try to

innovate by including features they did not ask for but will delight them as soon as they

receive them.

Creating such a mix of features for each release is difficult to achieve. This is the reason why

you should continuously test your markets with MVPs as mentioned above and gather real

data before you moving towards time-consuming and expensive feature development.

WSJF

Another interesting strategy for development is the Weighted Shortest Job First (WSJF)

approach. It is based on the ratio of the cost of delay and the effort estimated for

development [Rein2008].

𝑊𝑆𝐽𝐹 =
𝐶𝑜𝑠𝑡 𝑜𝑓 𝐷𝑒𝑙𝑎𝑦

𝐷𝑢𝑟𝑎𝑡𝑖𝑜𝑛

Cost of Delay is much more than the benefit (business value) if the respective requirement

will be developed. It also includes the perspective what happens if the respective

requirement will not be developed (for instance loss of market share, contract penalties) or if

the development of that requirement will reduce the risk for the entire implementation (proof

of concept) or open up a new opportunity (for instance the use of frameworks which will

lower the effort for development in the future).

WSJF can help determine which requirements (or which parts) should be developed first

without knowing all details exactly by just using the relations between the requirements

regarding Cost of Delay and Duration (development effort).

RE@Agile | Handbook | © IREB 95 | 126

Figure 32: WSJF example

The table is constructed as follows:

▪ Fill the column with the items/requirements that shall be rated (in our example items 1

- item 5)

▪ Fill the columns (except CoD) from left to right column per column:

▪ Business Value – which value is added if the item is developed?

▪ Time Criticality – which value is lost if the item will not be developed?

▪ RR (Risk Reduction) / OE (Opportunity Enablement) – how much risk can be

reduced or how much opportunities can be taken if the item is being

developed?

▪ Find per column the element that has the LEAST value per column and assign it a “1”

▪ Rate all other items in the column as a factor in relation to the “1” (you can use any

number, but the usage of the Fibonacci sequence is a good practice)

▪ Calculate the CoD Value as a sum of the previous columns

▪ Calculate the WSJF as the ratio of CoD / Duration

The item with the highest WSJF ratio should be developed first followed by the item with the

second highest ratio and so on.

Using this approach typically means that big chunks will be developed later since big chunks

normally have a low ratio. So, the suggestion to the product owner is to split big chunks and

identify those parts that deliver high value for respectively low effort and further postpone

the less valuable parts.

5.6 Summary

Ordering the backlog is an iterative two-step process. As a product owner you will preorder

the backlog based on business value during the first step. You have seen various ways to

define what business value means in your organization. As a product owner you should not

RE@Agile | Handbook | © IREB 96 | 126

underestimate risks. Sometimes you have to balance value with risk in order not to endanger

your product development. Value can be expressed on various scales like MoSCoW, or High,

Medium and Low. Or you simply put all items in a linear sequence based on their value. Then

you don’t have to use numbers.

Step two is for developers to give you estimates for each backlog item. Agile has done many

things to make the estimation process less threatening:

▪ The right people (those that do the work) estimate.

▪ Estimating is done as a group exercise, not by a single person.

▪ Estimating should be done relatively; comparing the size and effort of items instead

of giving them an absolute value.

Various processes can be used to estimate, like T-Shirt sizing or using Fibonacci cards in

Planning Poker. To speed up the process Wall Estimation or Affinity Estimation can be used.

When the backlog items are small enough and well understood the estimates will be precise

enough to allow iteration planning. If the items are still too large or have not been fully

understood, the team will indicate this with a higher value. This tells the product owner that

there is a need for clarification and/or refinement for these items.

As soon as the items are estimated, the product owner might change the order of the

backlog once more, for instance exchange a group of cheaper items with one more

expensive item.

Based on the determined value and the estimates a number of different strategies can be

applied to determine the sequence in which items should be assigned to iterations.

Strategies like creating a series of minimum viable products (MVPs), followed by a minimum

marketable product (MMP) before adding more and more features support the agile

principle of deliver early and deliver often. But also harvesting low hanging fruit or reducing

risk early on, are feasible alternatives.

An organization may adopt a strategy of early business value gain, for example, if its primary

goal is to deliver a product early and establish market share. A strategy of early risk

reduction may be preferred if a supplier wants to avoid at all costs that a product is returned

due to, for example, inadequate performance or security.

RE@Agile | Handbook | © IREB 97 | 126

6 Scaling RE@Agile

Requirements Engineering is easier for products that are small enough to be handled by a

single team at one location. All the chapters so far implicitly made that assumption: we have

shown how the most important requirements (i.e. the ones that deliver the highest business

value) can be implemented by that team without the need to distribute requirements among

multiple (development) teams. When this assumption no longer holds – that is, we need more

than one team to achieve our business goals and visions - we have to consider scaling our

development.

In this chapter we discuss why product development must sometimes be scaled and why

products have to be developed by more than one team, whether at the same location or

distributed geographically. When scaling, the product owner of the overall product (as the

role responsible for requirements management) is likely to be more challenged with

management aspects than with requirements aspects. We will discuss that the two factors

time to market and complexity (either functional complexity or challenging quality

requirements) justify and drive the scaling process. But organizational and technical

constraints will also influence the way we scale.

In this chapter we will cover the following aspects:

▪ What does scaling mean and how does it affect requirements and teams

(chapter 6.1)?

How do we (re-)organize the requirements and the teams in the large (chapter 6.2)?

▪ How are releases and roadmaps defined and used in long-term planning (chapter

6.3)?

▪ How are requirements validated in scaled environments (chapter 6.4)?

6.1 Scaling requirements and teams

We use the term scaling to describe a change in size, either of the system or the product, or

of the number of people involved.

Since around 2010, a number of different agile scaling frameworks have been developed to

address these issues. Among them are Nexus [NeGu], SAFe [SAFe1] [SAFe2], LeSS [LeSS],

Scrum@Scale [Suth2022], BOSSA Nova [BOSS2022], Scrum of Scrums [SofS], Spotify

[KnIv2012], though more exist. Scaling frameworks vary in their maturity level, the number of

good practices, guidelines and rules, and the degree of adaptability to the specific needs of

an organization. We will not discuss each framework in detail but will rather use them as

examples, especially when they present alternative approaches to handling requirements in

the large.

In Figure 33 the driving forces for scaling are shown as well as the constraints which may be

encountered on the way.

RE@Agile | Handbook | © IREB 98 | 126

Figure 33: Three dimensions that might trigger scaling

The first two dimensions in the figure above are:

▪ Time-to-market: One team would take too long to implement all the requirements

needed for a satisfactory product. In order to speed up the release you put several

teams to work.

▪ Complexity of the product: The product domain or the technologies used for the

implementation are so complex that one team cannot handle all aspects. You

therefore decide to work with multiple teams, each focusing on different aspects of

the product.

In both cases you are immediately confronted by the fact that you have to coordinate the

work of more than one team. This makes development harder compared to working with a

single, collocated team.

There is a third dimension shown in the figure above (local distribution):

▪ You might have to work with multiple teams for organizational or political reasons: you

may have people in different geographical locations or working across multiple

companies, or teams organized around particular specialist skill sets. We consider all

of these aspects as constraints that sometimes cannot be avoided, although we

wouldn’t necessarily recommend choosing these organizational structures where

they are not already present. More about good and bad criteria for team structuring in

chapter 6.2.

Be careful, however, with scaling when it is not absolutely necessary: working with more than

one team always introduces communication and coordination overhead. So, if the reasons

for scaling mentioned above do not apply, you probably should not scale at all!

If, however, you do scale, two things will always be true: you will be forced to add hierarchy to

the requirements, and hierarchy to the organization. Coarse-grained requirements are

needed when discussing the product as a whole; fine-grained requirements will be needed in

RE@Agile | Handbook | © IREB 99 | 126

the teams implementing some aspect of the product. And the teams themselves will need to

organize their cooperation to function successfully within a larger team.

How different scaling frameworks tackle these two aspects and what terminology they

suggest for hierarchies of requirements and hierarchies of teams is discussed in the

following chapters.

6.1.1 Organizing large scale requirements

In chapter 3 we discussed the topic of requirements granularity and introduced the terms

coarse-grained requirements, medium-grained requirements and fine-grained requirements.

We deliberately chose this more general terminology as the scaling frameworks (and agile

requirements tools) differ significantly in the specific terms they use.

Hierarchical representation of requirements reflects one of the key ideas of the product

backlog: coarse-grained requirements can still be vague or imprecise until they (or parts of

them) become relevant for an upcoming iteration and therefore need more detail and

precision. More fine-grained requirements are thus elaborated, and a relationship is

maintained to their larger parents. The resulting hierarchy fulfils two purposes:

▪ It provides an overview of all known requirements.

▪ It allows for the selective detailing of those elements that are most likely to be

developed soon.

Figure 34: Terminology for requirements at different levels of granularity in selected methods

and tools

For the purpose of this handbook, IREB has chosen one of the more popular sets of terms for

requirements at different levels of granularity that contains three terms: Epics (for coarse-

grained requirements), Features (medium-grained) and stories (fine-grained) (see also 3.3).

RE@Agile | Handbook | © IREB 100 | 126

Some scaling frameworks (e.g., Scrum [Suth2022]) and tools do not give explicit names to

the distinct levels of requirements, but simply, e.g., call them backlog items or stories, and

allow their refinement until they are small enough to be implemented in a single iteration.

Other tools start with a two-level approach, but then allow the number of levels to be

extended. Atlassian’s Jira, for example, uses epics and stories as standard, but allows this

hierarchy to be extended (recent versions suggest calling the largest requirements themes

and the next level initiatives). LeSS Huge refers to requirements at the level above the stories

as requirements areas.

The SAFe framework provides an extensive requirements meta-model [SAFe3] with four

levels of requirements and a strict naming scheme: epics, capabilities, features and stories.

Figure 35 shows a simplified version of this metamodel. The distinction between the levels is

not so much based on content, but rather on size.

A story has to be small enough to fit into one iteration (or sprint); a feature must be small

enough to fit in one release. Capabilities and epics are so large that they will span more than

one release (more about release planning in chapter 6.3).

Note that on each level SAFe distinguishes business features - those that create business

value - from enabler features - the necessary architectural prerequisites without which the

business value cannot be achieved. We will discuss this distinction in more detail in chapter

6.2.3. SAFe also uses specific terms for the acceptance criteria at different levels of

granularity, as shown below.

RE@Agile | Handbook | © IREB 101 | 126

Figure 35: Requirements Terminology of SAFe

Though many of today’s agile requirements tools are not capable of handling the four levels

of granularity in this meta-model out-of-the-box, most of them provide the means to

customize the hierarchy.

In order to avoid lengthy discussions about terminology (and methodology wars among your

teams!) we suggest that you decide on an inhouse terminology for the levels of granularity

you want to use and then stick to that in every development project. Very often either the

scaling framework or the tools you use will dictate the terminology.

6.1.2 Organizing teams

All scaling frameworks agree that …

▪ … regardless of the specific job titles responsibility is needed at every level in the

organization.

▪ … work has to be properly coordinated among the teams.

Beyond these general points, however, concepts and terminology differ in specific

approaches.

When Scrum is used for multiple teams, one technique often used to coordinate these teams

is called scrum of scrums. [SofS] The only difference to the work within one team is that

each team assigns a person (an ambassador) to represent them in coordination meetings

RE@Agile | Handbook | © IREB 102 | 126

that normally happen two or three times per week. During the course of a project the team

can nominate different people, picking the person who can best represent them according

to the topics being discussed.

Figure 36: Scrum of Scrums as a model for organizing requirements responsibility

In addition to the general coordination of developers, the requirements hierarchy discussed

in chapter 6.1.1 needs a corresponding hierarchy of requirements responsibility (Figure 36,

right). Coarse- and medium-grained requirements should be owned by somebody,

refinement jobs should be assigned to individual teams and dependencies among the teams

should be identified.

The organization of roles and responsibilities at different levels of the organizational

hierarchy differs between frameworks: from basic democracy to clearly hierarchical

structures.

Among the more democratic approaches are Nexus and BOSSA Nova. They do not suggest

having PO hierarchies. For those two frameworks the product owner is part of the team and

the team decides how to coordinate not only the development but also the requirements.

Thus, Nexus comes close to the idea of a scrum of scrums (i.e. self-managing teams) with its

Nexus Integration Team, which exists to coordinate, coach, and supervise the application of

Nexus and the operation of Scrum so the best outcomes are derived. The Nexus Integration

Team consists of the product owner, a Scrum Master, and Nexus Integration Team

members. But note, the Nexus Integration Team is not a decision-making authority: similar to

a scrum master of an individual team, the integration team mainly ensures that the required

communication takes place amongst the teams in order to solve shared problems.

An even more basic democracy is advocated by BOSSA Nova [BOSS2022]. Here, a

sociocracy [SOCI] is proposed as the ideal form for the organization in the large. The teams

select their ambassadors to the coordination circle, and each coordination circle selects

their ambassador to higher-level coordination circles, and so on.

RE@Agile | Handbook | © IREB 103 | 126

Other frameworks establish clearer requirements management structures with well-defined

decision-making authority. They often assign fixed job titles to the requirements

coordinators on higher levels. As we saw above with requirements hierarchies, the exact

terminology used in the organizational hierarchies also varies among the different

frameworks. Figure 37. gives an overview of some of the job titles and role names used in

selected frameworks.

Figure 37: Role names for requirements responsibility

Some frameworks (Scrum@Scale, Nexus, SAFe) reserve the role name “Product Owner” for

the individual team and propose new role names for the higher-level coordination roles.

Scrum@Scale uses the term Chief Product Owner, for example.

In SAFe the Product Manager is responsible for the output of multiple teams, who together

form an Agile Release Train. Where multiple Agile Release Trains work together to fulfil the

requirements of an even larger solution, they are managed by a Solution Manager. At the

largest level of granularity, corporate-wide agility, Epic Owners have overall requirements’

responsibility and together represent the Portfolio Management.

LeSS goes the opposite way and states that even for large teams the responsibility is with a

single product owner. Individual teams can then assign Area Product Owners to manage

requirements for the part of the product assigned to smaller teams.

You should remember: Job titles do not matter as long as there is someone (or a small group)

that is responsible for managing requirements. All frameworks suggest working with a single

product backlog, independent of the size of the team (see more details about logical

backlogs in chapter 6.2). Parts of that single backlog can then be assigned to sub-teams.

Whatever mechanism you use, make sure that the sub-teams (or their representatives)

communicate on a regular basis about overlaps, dependencies and priorities in order to

achieve the best outcome.

RE@Agile | Handbook | © IREB 104 | 126

6.1.3 Organizing lifecycles/iterations

In our definition in chapter 1.3 we stated that RE@Agile is an iterative process. For large

projects, most of the scaling frameworks suggest two different kinds of iterations:

▪ Short iterations (often called sprints): where individual developers try to implement

the backlog items allocated in the sprint planning meeting. These short iterations

typically last between two and four weeks.

▪ Longer iterations (often called releases): mainly intended to ensure integration of the

results of multiple teams. Releases can contain a number of short iterations. Different

frameworks establish different rules for how frequently to integrate, ranging from

integrate in every iteration to integrate at least in every release. Release iterations

should not last longer than two to three months.

For more about release planning and roadmapping see chapter 6.3.

6.2 Criteria for structuring requirements and teams in the

large

In large-scale product development mostly multiple teams have to work together on the

same product. In practice, each team develops a specific product slice that must be

integrated with other slices to build a working solution. Only the integrated product has value

for the stakeholders.

When scaling product development to multiple teams, it is not sufficient for all product

owners to simply meet and somehow discuss which teams should develop which part of the

product, and then to hope for the best! Sophisticated structures and practices are needed to

support team collaboration, manage requirements changes and enable rapid product

delivery. Otherwise, developers may waste effort coordinating with teams that are not

relevant for their work.

From a requirements perspective we have to close the loop: from the initial (business-)

requirement demanded by stakeholders, through the splitting of complex requirements into

smaller pieces manageable by developers, and then onto ensuring that the assembled

results combine to form a solution that can be released to the business.

6.2.1 Product-focused backlog

Product owners need a shared understanding of the product and its business context. This is

important as they need to work collaboratively on requirements at different abstraction

levels and to agree on individual teams' priorities, which should also reflect overall business

priorities. Furthermore, teams in an agile environment must identify requirement overlaps

and dependencies in order to minimize interruptions during development.

To support this kind of product focus, requirements must be managed using one logical

backlog. The key idea is that each requirement is held in one place only, avoiding

redundancies and contradictions. This can still be achieved even when further subdividing

the backlog into team backlogs, as illustrated in Figure 38.

RE@Agile | Handbook | © IREB 105 | 126

While refining coarse-grained requirements, product owners may work on backlog items not

yet associated to any team (see (a) in Figure 38) or they may split complex requirements and

hand the resulting backlog items to the teams for further refinement (see (b) and (c) in Figure

38). To ensure traceability among requirements on different abstraction levels, product

owners should link the backlog items.

For example, considering a complex requirement that describes the connection of a

specialized hardware device with a computer app using a proprietary protocol. This

requirement is initially stored in the product backlog (see (a) in Figure 38).

Assuming, that Team A and B develop the sytem, whereas Team A has experience with the

hardware device. Thus, the complex requirement can be split into a smaller requirement

focusing on the interface of the hardware device, which is managed in the backlog of Team

A, and another requirement describing the handling of the connection within the app (see (c)

in Figure 38), which is managed in the backlog of Team B.

Depending on the tool that is used for backlog management, you can either define team

filters on the common product backlog, or you can create (virtual) backlogs for each team.

Regardless of the choosen tooling, all backlog items together form one logical backlog.

In scaling frameworks such as Nexus, SAFe and Less, one logical product backlog is

recommended as well. In SAFe, the logical backlog is split into different backlogs which are

linked according to their scaling level (e.g Portfolio Backlog, Solution Backlog, Program

Backlog, several Team Backlogs). Each backlog contains requirements of appropriate

granularity according to the scaling level.

Figure 38: Key idea of the logical backlog approach.

RE@Agile | Handbook | © IREB 106 | 126

For example, backlog items from the Program Backlog are refined in Team Backlogs, while

additional items arising from the team’s local context may also be added directly to the

Team Backlogs.

6.2.2 Self-organizing teams and collaborative decision-

making

Product development will find it hard to react to changes in a timely fashion if each team

depends on a complicated web of interactions with other teams to approve any decision.

A team structure is required that allows teams to self-organize around value creation: to

better respond to stakeholder feedback, to make reasonable decisions independently and to

deliver end-to-end features [Ande2020].

The benefits of self-organizing teams are one of the Agile principles [AgMa2001]. Localized,

direct communication within teams (intra-team) allows for optimizations and effective

decision making, while communication between different teams (inter-team) is slower and

should, in general, be kept to a minimum [Rein2008].

Scrum has gone one step further since the Scrum Guide 2020 [ScSu2020] and sees teams

as self-managing (instead of self-organizing). This was changed with the background that a

team not only decides for itself who does the work and how it is done, but also what (on what)

is worked on.

Nevertheless, there will always be a need for collaboration within a network of teams working

towards a shared goal. This goal not only applies to the completion of the product, but also

begins with the coordination of requirements. A level of communication and coordination is

required that will, inevitably, constrain the level of freedom enjoyed by individual teams.

There are also organizational constraints that restrict the freedom of teams.

In order to both work on requirements collaboratively, and to take reasonable decisions

autonomously, teams need a general understanding of the requirements of the other teams

with whom they have to collaborate, without, though, becoming overwhelmed with all the

details. Product owners should therefore find an appropriate level of detail, sufficient for

teams to understand the impact of their decisions on other teams.

6.2.3 Understanding feature-based requirements splitting

Splitting requirements is necessary in agile development to break down larger requirements

into more fine-grained ones, which can be implementd in one iteration. As discussed in

chapter 3.4, different splitting techniques exsist that should be applied in agile development

regardless of how many teams are involved. But requirements splitting is much more

fundamental in large-scale product development as it enables self-organizing teams which

must be able to implement requirements independently from each other.

To deliver shippable product increments with minimal dependencies on other teams, teams

in an agile environment should work on loosely-coupled, end-to-end features. In our context,

the term ‘end-to-end feature’ refers to a set of coherent functions performing a specific

RE@Agile | Handbook | © IREB 107 | 126

task that provides business value to stakeholders. Depending on the abstraction level at

which the splitting is taking place, however, the definition of tasks may range from specific

user functions to entire business processes.

To identify end-to-end features, product owners must decompose the product scope into

units of loosely-coupled and internally consistent functionality (i.e. functional boundaries), as

represented in Figure 39.

If the scope is split according to these functional boundaries, product owners assigned to a

particular unit can work on associatd requirements with a greater degree of independence.

Corresponding teams are often referred to as feature teams [Larm2016].

Figure 39: The scope is partitioned to smaller units of end-to-end functionality and shared

among product owners.

A product owner and usually one agile team are assigned to a unit of end-to-end

functionality. Boundaries between units help to establish the communication pathways. The

boundaries should be clear to enable effective collaboration. Product owners can focus on

the detailed requirements assigned to their unit rather than spending a lot of time trying to

understand the entire scope and business context. They only have to collaborate with other

product owners on requirements affecting adjacent units. Requirements can be organized

hierarchically based on independent units, as discussed in chapter 6.2.1.

Partitioning the scope of a product can be achieved along business process lines, as

discussed in chapter 3.2. If a business process consists of multiple process lines, each line

can be supported by end-to-end business-level product features. Ideally, different process

lines should be loosely coupled within a business process, which usually allows product

owners to work independently on the requirements of their features. In this case, they only

have to agree on features that affect the interaction of the process lines.

Use cases are an approach to structuring requirements, not always typically associated with

Agile, but nevertheless recommended by a number of authors (for example Jacobsen,

Cockburn, Leffingwell). Use cases view the system as a black box and consider the actions

that take place between an actor (human or another system) and the solution.

Use cases may be used as part of the upfront activities to scope and structure a project, as

discussed in chapter 2.2.1.3, or elaborated as part of ongoing product development. In

contrast to process lines, a use case can be seen at a user-level as an end-to-end

functionality of the product.

RE@Agile | Handbook | © IREB 108 | 126

Product owners must only agree on requirements that relate to several use cases (for

example interfaces or common business entities).

6.2.4 Considerations when feature-based requirements

splitting is not possible

Unfortunately, in many cases it is not that easy to decompose requirements based around

loosely-coupled units of end-to-end functionality. Due to architectural design (for example

technology, infrastructure, system components, common platform, architectural layers

such as front- and backend) as well as organizational considerations (specialist skills, team

location, sub-contractors), units of functionality may overlap as illustrated in Figure 40. This

means that different teams in an agile environment must work together to implement

specific features and their respective product owners need to collaborate more closely on

requirements (Figure 40). Alternatively, a dedicated team can be established to specifically

work on the overlap, and to collaborate with each of the original teams focused on a unit of

functionality.

Figure 40: Intersecting units indicate close collaboration of product owners with respect to

requirements.

To implement features collaboratively, teams in an agile environment require a shared

understanding of requirements and their business context. They must also agree on

overlapping (cross-cutting) requirements, constraints and common technical interfaces so

that deliverables from different teams can be integrated to working increments. Integration

and testing of features become more complex and synchronizing teams using backlogs and

roadmaps is even more critical (see chapter 6.3).

Distributed team locations across different time zones present particular communication

challenges and require greater effort to coordinate. If developers from several distributed

teams need to implement certain features together, for example, product owners must

spend more time in decomposing requirements of those features in order to minimize

expensive communication.

Meetings (virtual or physical!) must be organized explicitly with additional planning effort and

at potentially inconvenient times. Different spoken languages or cultures may present

further problems.

RE@Agile | Handbook | © IREB 109 | 126

Teams distributed in different locations but in the same or adjacent time zones do not have

all these difficulties, but nevertheless require some effort to organize effective

communication, whether through virtual or physical meetings or using other collaboration

tools. Video conferencing and collaborative tools can be of much use here.

A special form of distributed teams are sub-contracted teams. Such teams are not

necessarily geographically distributed, but rather organizationally distributed i.e., team

members are employees of another organization that is in some contractual relationship with

other teams.

Ideally product owners should not be sub-contracted, as conflicts of interest may prevent

them from taking full product responsibility. Sub-contractors often have their own goals,

which may at times not fully correlate with the overall product vision or goals.

Each team must deliver value for the product increments. Some teams do not implement

features but instead focus on managing infrastructure or helping other teams to integrate

deliverables into product increments. For example, SAFe proposes having a dedicated

system team which will do the integration of all team artifacts towards one releasable

product increment. The Nexus Framework proposes having a "Nexus Integration Team",

which is not performing the work but rather providing consultation to the developers on how

to do this themselves. Hence, they add value implicitly to the product increment.

Further details on agile organizational design and practices can be found in [Ande2020].

Finally, we should be aware of the observation of Conway who described a very common

pattern known as “Conway’s Law”. It points out that organizational structure exerts an

influence on system design and product structure. In his article [Conw1968], Conway states

that organizations that build new systems or products tend to structure their products in the

same way that they themselves are currently organized and communicate. The resulting

team structure is often sub-optimal with respect to efficient development and delivery in a

large-scale agile context.

6.2.5 Telecoms company example

In this example, we illustrate the aforementioned approach for feature-based requirements

splitting and discuss the influence of organizational context on the structure of teams in an

agile environment and their ability to deliver working product features to customers.

Consider the example of a telecoms company looking to develop and launch two new

broadband products to their customers:

1. A new high speed VDSL (internet over the telephone line) product “VDSL100”

2. A fibre-to-the-home (internet over optical fibre) product “FTTH1000”

In a first phase, product owners analysed the two new products and together they

established the requirements hierarchy according to the key business processes as shown in

Figure 41:

RE@Agile | Handbook | © IREB 110 | 126

Figure 41: Broadband product requirements structure

Even if the details for each requirement might vary across the two products, the

organization of the coarse-grained requirements is the same.

To provide the two products to their customers, the telecoms company must extend its

existing IT system. For reasons relating to the organization’s history, the key IT systems, as

well as the resources and skills within the IT team, are organized as follows (1) Online Shop

and Customer Service Portal, (2) Customer Account and Billing System and (3) Network

Provisioning and Installation Systems.

That is to say, the online shop and customer services portal is considered a single IT product,

with a full technology stack of front-end, business logic and persistence layer.

This is also the case for the customer accounts and billing system. Developers typically

specialize in one or other of these systems, but not both. The network and provisioning

systems are more diverse but are similarly handled by specialist technical roles.

As the organization looks to transition to a scaled agile approach, leaders of the telecoms

company meet with product owners to discuss the best structure for teams in an agile

environment. The first proposed team structure and the assigned product requirements are

shown in Figure 42:

RE@Agile | Handbook | © IREB 111 | 126

Figure 42: Team structure matching the organizational structure

The composition of the teams in an agile environment closely matches the existing

organizational structure. The team members are specialists in the corresponding system and

work on requirements that address that system. Communication among the teams is

primarily required to ensure that the systems work together to sucessfully launch the two

services. No team is able to independently deliver working features fully supporting a

customer interested in either product. In addition to each team’s product owner, who

specializes in the requirements of that system, further product owners might be required to

coordinate the delivery of the coarse-grained, end-to-end process requirements.

To reduce communication effort among teams, a second composition of the teams in an

agile environment, shown in Figure 43 is then proposed:

RE@Agile | Handbook | © IREB 112 | 126

Figure 43: Team structure according to connect and terminate services

Each team is responsible for one key business process and experts from each of the

respective systems are mixed in each agile team. Thus, a team is capable of delivering an

end-to-end process feature (for example, ordering a broadband product) and providing

value to customers (as per the feature teams discussed in chapter 6.2.3). From the

requirements point of view, coordination effort is reduced as each product owner can design

their product with greater autonomy. Coordination is principally required on the product-

level (VDSL 100, FTTH 1000), for example to ensure a consistent product model across the

different processes. As the integrated solution includes three single IT systems,

communication between the teams will be required to coordinate changes and releases

within a particular system.

Another composition of teams in an agile environment is discussed, shown in Figure 44, also

emphasising the concept of teams with full end-to-end capabilities:

RE@Agile | Handbook | © IREB 113 | 126

Figure 44: Team structure with full end-to-end capabilities

Here each agile product team is capable of fully delivering a marketable product with all its

features (VDSL 100, FTTH 1000). With expertise across all systems and all business

processes each team is able to deliver business value independently. From an agile

perspective, this team structure should be preferred. In practice, however, these teams run a

high risk of duplicating functionality as they work on the overlapping requirements. To

address this issue a shared functions team, specializing on just these overlaps, is suggested,

and is tasked with finding generic solutions across the two products: leveraging existing

systems and services where possible, or developing enabler features where appropriate to

support these and other products (see the distinction between business features and

enabler features in 6.1.1).

So which approach should we choose? Unfortunately, there is no simple answer. As

discussed above, the preferred approach will depend on many factors: the existing

organizational structure, its willingness to change, technical and architectural constraints as

well as the degree of shared functionality across the different products and processes.

Ideally, we would first structure the requirements and then aim to build feature teams as far

as possible, but in truth a balance must be sought after careful consideration of all these

factors.

6.3 Roadmaps and large scale planning

In large-scale product development, product owners manage requirements in the product-

focused backlog as discussed in chapter 6.2.1. In contrast to the backlog, a roadmap is used

for planning product development incrementally. A roadmap is a prediction of how the

product will grow [Pich2016]. Roadmaps do not change the content of backlog items but

arrange them onto a timeline. It answers the question when we can roughly expect which

features.

A roadmap is a useful means to communicate (strategic) goals and decisions to the

developers and other stakeholders. It breaks down a long-term goal into manageable

RE@Agile | Handbook | © IREB 114 | 126

iterations, represents dependencies among the teams and provides direction and

transparency to the stakeholders.

A roadmap is the result of a planning exercise, as shown in Figure 45. The basis for planning

is on the one hand the ordered and estimated product backlog and on the other hand the

available developers and their capacity.

Figure 45 Planning exercise

With this input a product owner then faces the typical project management triangle in having

to balance scope (features or functionality of the product), costs (available resources) and

schedule (delivery dates). We have deliberately drawn the triangle standing on its head to

indicate that in agile projects very often costs and schedule are fixed and therefore the

planned features are the only variable.

At the beginning of the agile product development, little is known about the product or the

work done by the teams. Thus, the scope of the product, as well as the cost estimates, are

subject to a high level of uncertainty. As more iterations are completed and as more

feedback is gathered from the stakeholders, the uncertainty gradually decreases leading to

more reliable planning and a stable roadmap. This principle is known as the cone of

uncertainty [Boeh1981].

However, the cone of uncertainty also shows that releases to be published soon, offer

greater certainty as to what functionalities will be included, while releases further in the

future can only be vaguely defined (see Figure 45). Although this principle is generally true

for all agile development projects, it becomes even more important in large-scale product

development, as the risks due to product complexity and the potential for misalignment

across multiple teams – and consequently the need for more planning - are even greater.

6.3.1 Representing roadmaps

A roadmap shows strategic goals, milestones and coarse-grained requirements (for

example feature sets). Important milestones may be either internal or determined by

external events such as a trade show or the introduction of new regulation to the market.

RE@Agile | Handbook | © IREB 115 | 126

The representation of a roadmap depends on its purpose, target group and planning horizon.

For customers, management sponsors and the business, a long-term product roadmap

containing strategic goals and coarse-grained product requirements is often sufficient, with

features usually described in business language [Pich2016].

In SAFe, the product roadmap is called the ‘Solution Roadmap’ and represents long-term

milestones, strategic themes and releases. A ‘Solution Roadmap’ typically provides a one- to

three-year view, with the level of granularity greater in the near term and then reducing into

the long term.

SAFe divides a ‘Solution‘ into smaller ‘Program Increments‘ which deliver value to the

customers in the form of working features. To represent the shorter planning horizon, SAFe

introduces the ‘Program Increment Roadmap’, comprising up to four iterations. This offers a

more detailed view of the work to be done over coming months.

Another type of roadmap, known in SAFe as a ‘Program Board‘ [Leff2017], focuses on

delivery. This provides developers and their product owners with a view of fine-grained

backlog items (for example stories or tasks) and the dependencies among them.

A product roadmap of our case study iLearnRE containing strategic goals and coarse-

grained features is shown in Figure 46.

You can see here the three next releases: the first one is already committed; the other two

are forecasts. Each release is assigned to a pre-defined planning horizon. The features are

described in business terms rather than as epics and stories.

Figure 46: A roadmap for the case study iLearnRE

RE@Agile | Handbook | © IREB 116 | 126

In chapter 3 we introduced story maps as a way to structure your product backlog. These

maps can be extended to display the roadmap for the next releases simply by using the

vertical axis to align epics, features and stories to certain releases, thus creating individual

release backlogs. This is shown in Figure 47. The items on the story map can be coarser if the

release is still some time ahead.

Figure 47: Story maps with release overlay

Using stories and epics to represent the product roadmap has several drawbacks. For most

business stakeholders it might be hard to understand how the product as a whole is evolving

as too many details are included. Moreover, those roadmaps are prone to changes and must

be updated regularly, which is time-consuming.

Figure 48 shows a roadmap which not only includes the planned iterations, but also on the

vertical axis an alignment of backlog items to multiple teams, as discussed in chapter 6.2.

Program boards are fine-grained delivery roadmaps that are used in SAFe during ‘Program

Increment Planning’. They contain the language of the developers expressed by backlog

items.

The board represents the features to be implemented (F1...F4). The features are broken

down into backlog items, here colour-coded. Their order is indicated by the number. The

board is used to identify critical cross-team dependencies among backlog items, as

indicated by the arrows.

RE@Agile | Handbook | © IREB 117 | 126

Figure 48: A roadmap with explicit dependencies

If your teams are at the same location, you may be able to maintain your roadmap physically

on the wall. If you have to work with distributed teams, you will find dozens of roadmapping

tools to support visual planning of multiple releases, many of which are capable to a greater

or lesser extent of integrating with the tools used to manage the backlog itself.

In contrast to SAFe, other frameworks such as Less and Nexus do not suggest any specific

usage of roadmaps. That does not mean that roadmaps cannot be used within those

frameworks, but rather it is up to the developers to decide whether a roadmap is required

and which type of roadmap will best support planning and integration work.

6.3.2 Synchronizing teams with roadmaps

Agile development is focused on short iterations with fast feedback cycles, so the ideal

situation is one in which the product can be developed with the close collaboration of small

groups on a short rhythm.

It is also key that a regular rhythm is established for development iterations and releases

[DeEa2011]. Irregular cycles irritate the team, make planning harder and make it harder to

track the velocity of the developers.

This rhythm is also called cadence. In music a cadence is a melodic configuration that

creates a sense of resolution or finality. For software development this sense of resolution is

RE@Agile | Handbook | © IREB 118 | 126

created on multiple levels of abstraction: within the developers through daily standup

meetings, for the developers as a whole in delivering to the product owner at the end of a

sprint iteration, and potentially for the scaled development organization in creating a

shippable product increment for each release cycle.

If you have only one team, delivering a new product increment after every iteration can be

done without aligning with other teams. Thus, no other cadence than the iteration cadence

(in Scrum the length of the sprint) is needed. If you have multiple teams working on the same

product, you need to integrate all team deliverables to a new product increment. As end-to-

end testing and the work required to package all deliverables into a release may involve

some additional effort, an additional cadence for customer releases may be introduced.

In this sense, a large-scale agile organization can be compared with a large orchestra

performing complex music. A well-working, large-scale agile organization shows a kind of

harmony. If the organization is not working well, then the harmony is not visible, just like an

orchestra that is not playing in time. If you have to work with multiple teams, then the

iteration lengths for each team do not have to be identical, but the cycles should be

compatible in the sense that they can be synchronized at the level of the larger cadence.

Thus, for example, individual teams may choose a sprint length of two or four weeks within a

four- (or eight-) week release cycle (see Figure 49).

Figure 49: Different but compatible iteration lengths

Manual integration and testing are likely to lead to longer release cycles. Automation can

help to shorten release cycles: continuous integration approaches and continuous

deployment capabilities may allow teams to deploy features on shorter cycles.

6.3.3 Developing roadmaps

In large-scale product development, requirements work is carried out by different product

owner roles based around a hierarchy of requirements, as discussed in chapter 6.2.1.

Responsibilities with respect to roadmaps will also be different at each level of the hierarchy.

RE@Agile | Handbook | © IREB 119 | 126

On a higher level, for example, product owners may be responsible for the product roadmap

and, on a lower level, they may be more focused on the delivery roadmap.

To develop a long-term product roadmap, a product owner must first define a product vision

and strategy (see chapter 2). This is necessary so that the right stakeholders are engaged to

work on the product roadmap (stakeholder management).

After establishing a product vision and strategy, product owners must then elicit coarse-

grained requirements (see chapter 3) by engaging with the necessary stakeholders. There is

no need to invest time on detailed requirements at this point. Later, during backlog

refinement, more details will be discovered.

To gain full support for product development, various stakeholders must be involved early

and should understand the business goals of the product. The product roadmap should

therefore be tailored to their particular interests and information needs and should be shared

and validated with them regularly. Common stakeholders are, for example, executives and

senior management, sales and marketing, as well as developers.

Product owners assign coarse-grained requirements over a broad planning horizon, while

also showing strategic goals on the timeline. In an initial product roadmap, product owners

should avoid hard deadlines.

Instead, the features should be planned at the monthly or quarterly level. As product

development matures, concrete dates and deadlines can be added.

To create a mid-term delivery roadmap, product owners must refine the backlog items from

the existing product roadmap. These items need to be roughly estimated by the developers,

even if the estimates are still imprecise (for example T-shirt sizes) at this stage. The estimate

must only be good enough to provide an overview of upcoming iterations.

Our practical experience shows that in most large-scale estimates, the errors for each

individual estimate neutralize each other. The overall estimate is therefore generally

accurate enough, even if the individual estimates are not correct.

In chapter 5.4 we discussed estimation techniques for backlog items. You can also apply the

same techniques for longer term estimation and planning. This estimation work is beyond the

scope of traditional Requirements Engineering but becomes important in RE@Agile contexts

because requirements work goes hand-in-hand with planning. Much more on that topic can

be found in [Cohn2006].

Creating and updating delivery roadmaps typically happens at face-to-face planning events

known as big room plannings (or PI Planning in SAFe), held at regular intervals. In such

events, developers collaboratively plan, estimate and prioritize features. Products owners

prepare the backlog items upfront and align them to the vision as well as to the existing

product roadmap. Teams work with each other to identify the important risks and

dependencies. The delivery roadmap is updated to show the refined backlog items, the

dependencies among them and how they align with the product vision.

RE@Agile | Handbook | © IREB 120 | 126

6.3.4 Validating roadmaps

The product roadmap should also be reviewed from the perspective of the business:

customer feedback, market changes, upcoming ideas and markets trends, as well as similar

products entering the market, should all be considered. For this purpose, the MMP (as

introduced in chapter 5.5) is a good starting point. The validation intervals depend on the

stability of the market: in a highly dynamic market, for example, the product roadmap should

be reviewed at least monthly, otherwise, quarterly intervals may be sufficient.

The key stakeholders should be kept involved with the developing roadmap to increase

acceptance and to communicate changes.

In order to narrow the cone of uncertainty, delivery roadmaps should also be updated

regularly, based either on stakeholder feedback on integrated product increments (see MVP

in chapter 5.5), or on the results of iterations. In the event of major uncertainties, open

questions could also be clarified in more detail in so-called "spikes" in order to then develop

new/modified requirements or make changes to the delivery roadmap as a result of the new

findings. The validation intervals depend on the maturity of the product development and on

changes to the product roadmap. In a mature development process, for example, where

senior developers have been working together for some time on the same product, the

delivery roadmap may only need to be reviewed after a release. At the beginning of product

development, the delivery roadmap should be validated after the integration of the first

product increment (and then after each subsequent increment). Validation of delivery

roadmaps can be included within the regular planning events described above.

6.4 Product validation

A key idea of agile development is to develop a small slice of the product, generate

feedback by involving stakeholders and adapt the product development according to the

findings and insights gained. Thus, following the principle of the Build-Measure-Learn cycle

[Ries2011], product validation becomes an important step to gain rapid feedback. Each time

a new product increment is released, product owners use that product increment to verify its

business value and to examine whether the product requirements had been correctly

understood.

Product-level validation is an important method in large-scale product development as it

ensures that product owners together share full accountability from business requirements

to product integration. It is the whole product that has value for the stakeholders, not only

small product slices.

In Scrum, a sprint review is a suitable means of discussing a product increment (and the

possible resulting requirements) with the relevant stakeholders. In large-scale product

development, a similar idea can be used: but instead of reviewing a single product slice

developed by one team, all team deliverables are integrated to a working product increment

worth validating. The product increment is demonstrated in a product review

(demonstration), showcasing end-to-end features. Thus, stakeholders get a better

impression of the entire product [SAFe1], [Larm2016], [LeSS].

RE@Agile | Handbook | © IREB 121 | 126

To coordinate the integration work that is the basis for product-level validation, a delivery

roadmap showing release milestones can be used to synchronize the teams (see chapter

6.2.3).

The challenges of large-scale product development (as mentioned in chapter 6.1) must be

considered in product-level validation as well. This means that you must involve a high

number of stakeholders and users effectively and communicate their feedback back to the

developers.

Moreover, you must reach an overall understanding of the integrated product by considering

different stakeholder perspectives and knowledge.

When involving many people in a large product review, it is very important to find the right

level of detail in discussions to keep all participants interested. One approach is to use a

diverge-and-converge collaboration pattern [DeCo]. In the diverge part of the review, the

room is divided in multiple areas where teams demonstrate different features of the product

increment. As on a bazaar, people walk around, attend demonstrations of interest and give

feedback to the corresponding team. Afterwards, in the converge part of the review, people

get together to summarize their findings and discuss important aspects and share new

ideas.

Product reviews feature in several scaling frameworks. In Nexus and Less the review

meeting is called a Sprint Review. In SAFe it is known as System Demo. According to the

Nexus guide, the review should be time-boxed using, as a rule of thumb, roughly four hours

for a one-month sprint.

Another approach for product validation in large-scale product development is one that is

based on data analysis [MaEa2016]. The integrated product increment is delivered to users

and, based on their behavior, measurements are made as to whether the product features

have a positive, neutral or negative impact. Data analysis frameworks are typically used to

analyze feedback data systematically.

For example, product owners can use the results to identify potentially poorly-designed

features. To better understand the identified problems, they may need to again apply regular

requirements elicitation and analysis techniques.

However stakeholder feedback has been gathered, product owners adapt and re-prioritize

existing backlog items and add new items whereever necessary. Some items may be

removed from the backlog if it has been shown in product validation that the corresponding

features do not generate the intended value. Changes to the product backlog may, in turn,

trigger changes to the product and delivery roadmap, as discussed in chapter 6.3.4.

RE@Agile | Handbook | © IREB 122 | 126

List of abbreviations

DSDM Dynamic Systems Development Method

DoD Definition of Done

DoR Definition of Ready

LeSS Large Scale Scrum (https://less.works)

MMP Minimum Marketable Product

MVP Minimum Viable Product

PO Product owner

RE Requirements Engineering

ROI Return on Investment

SAFe Scaled Agile Framework (www.scaledagileframework.com)

WSJF Weighted Shortest Job First

https://less.works/
http://www.scaledagileframework.com/

RE@Agile | Handbook | © IREB 123 | 126

References

[AgAl2024] Glossary of the Agile Alliance: Definition of term “Definition of Ready”:

https://www.agilealliance.org/glossary/definition-of-ready. Last

visited March 2025.

[AgMa2001] https://agilemanifesto.org/principles.html, last visited March 2025.

[Alex2005] Alexander, I. F.: A Taxonomy of Stakeholders – Human Roles in System

Development. International Journal of Technology and Human

Interaction 1 (1): 23-59, 2005.

[Ande2020] Anderson, J.: Agile Organizational Design – Growing Self-Organizing

Structure at Scale. Leanpub, 2020.

[Beck2002] Beck, K.: Test Driven Development: By Example. Addison-Wesley,

2002.

[Boeh1981] Boehm, B. W.: Software Engineering Economics, Prentice Hall, 1981.

[BOSS2022] https://www.agilebossanova.com/#bossanova. Last visited March

2025.

[ClBa1994] Clegg, D.; Barker, R.: Case Method Fast-Track: A RAD Approach.

Addison-Wesley, 1994.

[ClEa2001] Clements, P.; Kazman, R.; Klein, M.H.: Evaluating Software

Architectures: Methods and Case Studies, Addison-Wesley, 2001.

[Cohn2004] Cohn, M.: User Stories Applied For Agile Software Development,

Addison-Wesley, 2004.

[Cohn2006] Cohn, M.: Agile Estimation and Planning, Addison Wesley, 2006.

[Conw1968] Conway, M. E.: How Do Committees Invent? Datamation Magazine,

April 1968, pp. 28-31.

http://www.melconway.com/Home/Committees_Paper.html. Last

visited March 2025.

[Coop2004] Cooper, A.: The Inmates are Running the Asylum: Why High Tech

Products Drive Us Crazy and How to Restore the Sanity, 2nd ed.,

Pearson Higher Education, 2004.

[DeEa2003] DeMarco, T.; Lister, T.: Waltzing with Bears – Managing Risks on

Software Projects, Dorset House, 2003.

[DeEa2011] DeMarco, T.; Hruschka, P. Lister, T.; McMenamin, S.; Robertson, J+S.:

Adrenalin-Junkies und Formular-Zombies : Typisches Verhalten in

Projekten, Kapitel 31: Rhythmus, Carl Hanser Verlag, 2011

[DeCo] A study of the design process

https://www.designcouncil.org.uk/fileadmin/uploads/dc/Documents/El

evenLessons_Design_Council%2520%25282%2529.pdf. Last visited

March 2025.

https://www.agilealliance.org/glossary/definition-of-ready
https://agilemanifesto.org/principles.html
https://www.agilebossanova.com/#bossanova
http://www.melconway.com/Home/Committees_Paper.html
https://www.designcouncil.org.uk/fileadmin/uploads/dc/Documents/ElevenLessons_Design_Council%2520%25282%2529.pdf
https://www.designcouncil.org.uk/fileadmin/uploads/dc/Documents/ElevenLessons_Design_Council%2520%25282%2529.pdf

RE@Agile | Handbook | © IREB 124 | 126

[Dora1981] Doran, G. T: There’s a S.M.A.R.T. way to write management’s goals and

objectives, Management Review. AMA FORUM 70 (11): 35–36, 1981.

[Glin2024] Glinz, M.: A Glossary of Requirements Engineering Terminology.

Standard Glossary for the Certified Professional for Requirements

Engineering (CPRE) Studies and Exam, Version 2.1.1, 2024.

https://cpre.ireb.org/en/knowledge-and-resources/downloads#cpre-

glossary. Last visited March 2025.

[GLSB2024] Glinz, M.; van Loenhoud, H.; Staal, S.; Bühne, S.: CPRE Foundation

Level Handbook, v1.2.0, 2024. https://cpre.ireb.org/en/knowledge-

and-resources/downloads#cpre-foundation-level-handbook. Last

visited March 2025.

[HeHe2011] Heath, C., Heath, D.: Switch: Switch: How to Change Things When

Change Is Hard. Crown Business, 2010

[High2001] Highsmith, J.: Design the Box. Agile Project Management E-Mail

Advisor 2001,

http://www.joelonsoftware.com/articles/JimHighsmithonProductVisi.h

tml. Last visited March 2025.

[Hrus2017] https://b-agile.de/downloads/articles/story_splitting.pdf. Last visited

March 2025.

[IREB2024] IREB e.V.: CPRE Foundation Level Syllabus, v3.2.0, 2024.

https://cpre.ireb.org/en/knowledge-and-resources/downloads#cpre-

foundation-level-syllabus. Last visited March 2025.

[ISO25010] ISO/IEC 25010:2023: Systems and software engineering - Systems

and Software Quality Requirements and Evaluation (SQuaRE) -

System and software quality models:

https://www.iso.org/standard/78176.html. Last visited March 2025.

[ISO25012] ISO/IEC 25012:2008: Software engineering - Software product Quality

Requirements and Evaluation (SQuaRE) - Data quality model:

https://www.iso.org/standard/35736.html. Last visited March 2025.

[Jaco1992] Jacobson, I. Object-oriented Software Engineering - A Use Case

Driven Approach, ACM Press, 1992.

[Jaco2011] https://www.ivarjacobson.com/publications/white-papers/use-case-

ebook. Last visited March 2025.

[HaCh1998] Hammer, M., Champy, J.: Business Reengineering: Die Radikalkur für

das Unternehmen. Harper, 1993.

[Jeff2001] Jeffries, R.: Essential XP: Card, Conversation, Confirmation, 2001,

https://ronjeffries.com/xprog/articles/expcardconversationconfirmati

on/. Last visited March 2025.

[Kahn2016] Kahneman D.: Thinking, Fast and Slow. Penguin , 2016.

https://cpre.ireb.org/en/knowledge-and-resources/downloads#cpre-glossary
https://cpre.ireb.org/en/knowledge-and-resources/downloads#cpre-glossary
https://cpre.ireb.org/en/knowledge-and-resources/downloads#cpre-foundation-level-handbook
https://cpre.ireb.org/en/knowledge-and-resources/downloads#cpre-foundation-level-handbook
http://www.joelonsoftware.com/articles/JimHighsmithonProductVisi.html
http://www.joelonsoftware.com/articles/JimHighsmithonProductVisi.html
https://b-agile.de/downloads/articles/story_splitting.pdf
https://cpre.ireb.org/en/knowledge-and-resources/downloads#cpre-foundation-level-syllabus
https://cpre.ireb.org/en/knowledge-and-resources/downloads#cpre-foundation-level-syllabus
https://www.iso.org/standard/78176.html
https://www.iso.org/standard/35736.html
https://www.ivarjacobson.com/publications/white-papers/use-case-ebook
https://www.ivarjacobson.com/publications/white-papers/use-case-ebook
https://ronjeffries.com/xprog/articles/expcardconversationconfirmation/
https://ronjeffries.com/xprog/articles/expcardconversationconfirmation/

RE@Agile | Handbook | © IREB 125 | 126

[Kniberg] Kniberg, H.: Scaling Agile @ Spotify with Henrik Kniberg

https://www.youtube.com/watch?reload=9&v=jyZEikKWhAU&feature

=youtu.be ,and

https://www.youtube.com/watch?v=4GK1NDTWbkY&t=156s. Last

visited March 2025.

[Larm2016] Larman, C.: Large-Scale Scrum: More with LeSS, Addison Wesley,

2016.

[LaGr1] Lawrence, R.; Green P.: The Humanizing Work Guide to Splitting User

Stories. http://agileforall.com/resources/how-to-split-a-user-story.

Last visited March 2025.

[Leff2007] Leffingwell, D.: Scaling Software Agility – Best Practices for Large

Enterprises, Addison Wesley, 2007.

[Leff2010] Leffingwell, D.: Agile Software Requirements – Lean Requirements

Practices for Teams, Programs, and the Enterprise, Addison Wesley,

2010.

[Leff2017] Leffingwell, D. et al.: SAFe Reference Guide, Scaled Agile, Inc. 2017.

[LeSS] Large-Scale Scrum: https://less.works, last visited March 2025.

[MaEa2016] Maalej, W., Nayebi, M., Johann T., Ruhe, G.: Toward Data-Driven

Requirements Engineering. IEEE Software 33 (1): 48-54, 2016.

[MaRo2021] Mahlberg, M.; Rothman, J.: Looking at Systems to Enhance Outcomes.

Agile Aliance, March 2021. https://www.agilealliance.org/looking-at-

systems-to-enhance-outcomes/. Last visited November 2024.

[McPa1984] McMenamin, S., Palmer, J.: Essential Systems Analysis, Yourdon Press,

1984.

[Meye2014] Meyer, B.: Agile! The Good, the Hype and the Ugly, Springer, 2014.

[NeGu] https://www.scrum.org/resources/nexus-guide. Last visited March

2025.

[OsPi2010] Osterwald, A., Pigneur, Y.: Business Model Generation: A Handbook for

Visionaries, Game Changers, and Challengers. John Wiley and Sons,

2010.

[Patt2014] Patton, J.: User Story Mapping –Discover the Whole Story, Build the

Right Product, O’Reilly, 2014.

[Pich2016] Pichler, R.: Strategize – Product Strategy and Product Roadmap

Practices for the Digital Age, Pichler Consulting 2016.

[Prim2017] CPRE RE@Agile Primer https://cpre.ireb.org/en/downloads-and-

resources/downloads#cpre-agile-primer-syllabus-and-study-guide.

Last visited March 2025.

[Rein2008] Reinertsen, D.: Principles of Product Development Flow: Second

Generation Lean Product Development. Celeritas Publishing 2008.

https://www.youtube.com/watch?reload=9&v=jyZEikKWhAU&feature=youtu.be
https://www.youtube.com/watch?reload=9&v=jyZEikKWhAU&feature=youtu.be
https://www.youtube.com/watch?v=4GK1NDTWbkY&t=156s
http://agileforall.com/resources/how-to-split-a-user-story
https://less.works/
https://www.agilealliance.org/looking-at-systems-to-enhance-outcomes/
https://www.agilealliance.org/looking-at-systems-to-enhance-outcomes/
https://www.scrum.org/resources/nexus-guide
https://cpre.ireb.org/en/downloads-and-resources/downloads#cpre-agile-primer-syllabus-and-study-guide
https://cpre.ireb.org/en/downloads-and-resources/downloads#cpre-agile-primer-syllabus-and-study-guide

RE@Agile | Handbook | © IREB 126 | 126

[Ries2011] Ries, E.: The Lean Startup: How Today's Entrepreneurs Use Continuous

Innovation to Create Radically Successful Businesses, Crown

Business, New York, NY, 2011.

[RoRo2012] Robertson S.; Robertson J.: Mastering the Requirements Process –

Getting Requirements Right, 3rd edition, Addison Wesley, 2012.

[RoRo2017] Robertson S.; Robertson J.: Volere Requirements Specification

Template, https://www.volere.org/requirements-auditing-is-the-

specification-fit-for-its-purpose/. Last visited March 2025.

[Robe2003] Robertson, S.: Stakeholders, Goals, Scope: The Foundation for

Requirements and Business Models, 2003, https://www.volere.org/wp-

content/uploads/2018/12/StkGoalsScope.pdf. Last visited March

2025.

[SAFe1] https://www.scaledagileframework.com/roadmap/. Last visited March

2025.

[SAFe2] https://www.scaledagileframework.com/pi-planning/. Last visited

March 2025.

[SAFe3] https://www.scaledagileframework.com/safe-requirements-model/.

Last visited March 2025.

[Suth2022] Sutherland, J. and Scrum, Inc: Scrum@Scale Guide:

https://www.scrumatscale.com/scrum-at-scale-guide/. Last visited

March 2025.

[ScSu2020] Schwaber, K., Sutherland, J.: The Scrum Guide. 2020

https://scrumguides.org/docs/scrumguide/v2020/2020-Scrum-

Guide-US.pdf. Last visited March 2025.

[SOCI] https://sociocracy30.org. Last visited March 2025.

[SofS] https://scrumguide.de/scrum-of-scrums/. Last visited March 2025.

[KnIv2012] Kniberg, H.; Ivarsson, A.: Scaling Agile @ Spotify with Tribes, Sqads,

Chapters & Guilds. https://blog.crisp.se/wp-

content/uploads/2012/11/SpotifyScaling.pdf. Last visited March 2025.

[Wake2003] Wake, B: INVEST in Good Stories, and SMART Tasks, 2003,

https://xp123.com/articles/invest-in-good-stories-and-smart-tasks/.

Last visited March 2025.

[WyHT2017] Wynne, M., Hellesøy, A., Tooke, S.: The Cucumber Book - Behaviour-

Driven Development for Testers and Developers, The Pragmatic

Programmers, 2017.

https://www.volere.org/requirements-auditing-is-the-specification-fit-for-its-purpose/
https://www.volere.org/requirements-auditing-is-the-specification-fit-for-its-purpose/
https://www.volere.org/wp-content/uploads/2018/12/StkGoalsScope.pdf
https://www.volere.org/wp-content/uploads/2018/12/StkGoalsScope.pdf
https://www.scaledagileframework.com/roadmap/
https://www.scaledagileframework.com/pi-planning/
https://www.scaledagileframework.com/safe-requirements-model/
https://www.scrumatscale.com/scrum-at-scale-guide/
https://scrumguides.org/docs/scrumguide/v2020/2020-Scrum-Guide-US.pdf#zoom=100
https://scrumguides.org/docs/scrumguide/v2020/2020-Scrum-Guide-US.pdf#zoom=100
https://sociocracy30.org/
https://scrumguide.de/scrum-of-scrums/
https://blog.crisp.se/wp-content/uploads/2012/11/SpotifyScaling.pdf
https://blog.crisp.se/wp-content/uploads/2012/11/SpotifyScaling.pdf
https://xp123.com/articles/invest-in-good-stories-and-smart-tasks/

