Certified Professional
for Requirements
Engineering

RE@Agile
Syllabus

Stefan Gartner, Peter Hruschka,

Markus Meuten, Gareth Rogers,

Hans-Joérg Steffe

2.3.0 | October 01, 2025

Terms of use:

1. Individuals and training providers may use this syllabus as a basis for seminars,
provided that the copyright is acknowledged and included in the seminar materials.
Anyone using this syllabus in advertising needs the written consent of IREB e.V. for
this purpose.

2. Any individual or group of individuals may use this syllabus as basis for articles, books
or other derived publications provided the copyright of the authors and IREB e.V. as
the source and owner of this document is acknowledged in such publications.

© IREB e.V.

All rights reserved. No part of this publication may be reproduced, stored in a retrieval
system or transmitted in any form or by any means, electronic, mechanical, photocopying,
recording or otherwise, without either the prior written permission of the authors or IREB e.V.

Acknowledgements

The current version of this syllabus has been written by: Stefan Gartner, Peter Hruschka, Kim
Lauenroth, Markus Meuten, Gareth Rogers and Hans-Jorg Steffe.

Review by Rainer Grau. Review comments were provided by Jan Jaap Cannegieter, Andrea
Herrmann, Uwe Valentini and Sven van der Zee. English review by Gareth Rogers.

Approved for release on October 25, 2024 by the IREB Council upon recommendation of
Xavier Franch.

We thank everybody for their involvement.

Copyright © 2017-2025 for this syllabus is with the authors listed above. The rights have
been transferred to the IREB International Requirements Engineering Board e.V.

Purpose of the document

This syllabus defines the certificates for the RE@Agile Practitioner and for the

RE@Agile Specialist of the International Requirements Engineering Board (IREB). The
syllabus provides training providers with the basis for creating their course materials.
Students can use the syllabus to get an overview of the intended content and the learning
objectives. Content details for the preparation of the course material and for the exam can
be found in the "Handbook RE@Agile, Education and Training for the IREB Certified
Professional for Requirements Engineering RE@Agile Practitioner | Specialist".

Contents of the syllabus

The RE@Agile module is aimed at people from Requirements Engineering, Business Analysis,
Business Engineering, Software and System Development as well as existing roles in the agile
community (Product Owner, Scrum Master, Developer) who would like to deepen their
knowledge in dealing with requirements.

Level of detail
The level of detail of this syllabus allows internationally consistent teaching and examination.
To reach this goal, the syllabus contains the following:

:F“E RE@Agile | Syllabus | © IREB 2 | 37

= General educational objectives,
= Contents with a description of the educational objectives, and
= References to further literature (where necessary).

Educational objectives / cognitive knowledge levels
All modules and educational objectives in this syllabus are assigned a cognitive level. The
following levels are used:

= L1:Know (identify, remember, retrieve, recall, recognize) - The candidate will
recognize, remember and recall a term or concept.

= L2:Understand (summarize, generalize, abstract, classify, compare, map, contrast,
exemplify, interpret, translate, represent, infer, conclude, categorize, construct
models) - The candidate can select the reasons or explanations for statements
related to the topic, and can summarize, compare, classify, categorize and give
examples for the concept.

= L3: Apply (implement, execute, use, follow a procedure, apply a procedure) - The
candidate can select the correct application of a concept or technique and apply it to
a given context.

» L4: Analyze (analyze, organize, find coherence, integrate, outline, parse, structure,
attribute, deconstruct, differentiate, discriminate, distinguish, focus, select) - The
candidate can separate information related to a procedure or technique into its
constituent parts for better understanding, and can distinguish between facts and
inferences. Typical application is to analyze a document, software or project situation
and propose appropriate actions to solve a problem or task.

= L5: Evaluate (critique, judge) - The candidate can give a well-argued critique of a
given artifact, and make a profound judgment in a given case.

Note that a learning objective at cognitive knowledge level Ln also contains elements of all
cognitive levels below it (L1to Ln-1).

Example: A learning objective of the type "Apply the RE technique xyz" is at the cognitive
knowledge level (L3). However, the ability to apply requires that learners know RE technique xyz
(L1) and that they understand what the technique is for (L2).

All terms used in this syllabus and defined in the IREB Glossary have to be
known (L1), even if they are not explicitly mentioned in the educational
I objectives.

) The glossary is available for download on the IREB website at
https://www.ireb.org/en/downloads/#cpre-glossary-2-0

This syllabus and the related handbook use the abbreviation "RE" for Requirements
Engineering.

:F“E RE@Agile | Syllabus | © IREB 3 | 37

https://www.ireb.org/en/downloads/#cpre-glossary-2-0

Structure of the syllabus

The syllabus consists of six main chapters. One chapter covers one educational unit (EU).
Chapter titles contain the cognitive level of their chapters, which is the highest level of their
sub-chapters. The teaching time suggested is the minimum a course should invest for that
chapter. Training companies are free to devote more time to the EUs and the exercises.
However, they should ensure that the time required is maintained in relation to the other EUs.
Important terms of each chapter are listed at the beginning of the chapter.

Example: EU2 A Clean Project Start (L2)
Duration: 120 minutes + 60 minutes exercise
Terms: Product Vision, Product Goal, Stakeholder, Persona, Product Scope, System Boundary

This example shows that chapter 2 contains education objectives at level L2, and 180
minutes are intended for teaching the material in this chapter.

Each chapter can contain sub-chapters. Their titles also contain the cognitive level of their
content.

Educational objectives (EO) are enumerated. The numbering shows to which sub-chapter
they belong.

Example: EO 3.3.1Be able to apply the INVEST criteria when writing requirements (L3)

This example shows that educational objective EO 3.3.1is described in sub-chapter 3.3 and
that cognitive level L3 is expected.

:F“E RE@Agile | Syllabus | © IREB 4 | 37

The examination

This syllabus covers educational units and educational objectives for the certification exams
of the

= CPRE RE@Agile - Practitioner
= CPRE RE@Agile - Specialist

The exam to obtain the CPRE RE@Agile - Practitioner - certificate consists

of a multiple-choice exam.
I The exam to obtain the CPRE RE@Agile - Specialist - certificate consists
(] of a written assignment.

Both exams include exam questions on all educational units and all
educational objectives of the syllabus.

Each exam question may include material from multiple chapters of the
syllabus as well as multiple learning objectives or even from parts of one
learning objective.

The multiple-choice exam for the Practitioner certificate

» testsall learning objectives of the syllabus. However, for the
educational objectives at cognitive knowledge levels L4 and L5, the
exam questions are limited to items at cognitive levels L1 through
L3.

» can be held immediately after a training course, but also
independently from courses (e.g., remote or in an examination
center).

The written assignment for the Specialist certificate

» tests all educational objectives of the syllabus at the cognitive
knowledge levels indicated for each learning objective.

» follows the task description for RE@Agile - Specialist -, found at
https://cpre.ireb.org/en/downloads-and-
resources/downloads#cpre-re-agile-specialist-written-
assignment.

» s self-paced and submitted to a licensed Certification Body.

The following generic learning objectives also apply to the written
assignment for the Specialist certificate:

EO Gt Analyze and illustrate RE@Agile problems using a context
familiar to the candidate or one that closely resembles it (L4).

EO G2: Evaluate and reflect on the usage of RE@Agile practices,
methods, processes and tools in projects that the candidate was involved
in (L5).

A list of IREB licensed certification bodies can be found on the website:

:F“E RE@Agile | Syllabus | © IREB 5 | 37

https://www.ireb.org

Version history

Version Date

1.0.0 February 20,
2018

1.0.1 September 11,
2018

1.0.2 September 24,
2018

1.0.3 December 17,
2019

2.0.0 July 1,2022

2.1.0 May 1,2024

2.2.0 May 24,2024

:F“E RE@Agile | Syllabus | © IREB 6 | 37

Comment

Initial Version

Typos fixed

A couple of EQ’s reformulated to
meet standard style. No change
content wise.

Statement on important terms

clarified

Credits for reviewers added

Consistent usage of the term
refinement meeting and product
backlog refinement

Educational objective levels updated
New version of chapter 6

Corrections in all chapters

Rework on the suggested teaching
time and practice time on all chapters

Information about Advanced Level
exam split added.

New Corporate Design implemented,
Cognitive Knowledge Levels
synchronized, Term “Advanced Level
removed”.

Cognitive Knowledge Levels fixed
again.

Author

Bernd Aschauer,
Lars Baumann,
Peter Hruschka,
Kim Lauenroth,
Markus Meuten,
Sacha Reis and
Gareth Rogers

Peter Hruschka,
Stefan Sturm

Stefan Sturm

Hans-Jorg
Steffe

Peter Hruschka,
Markus Meuten,
Gareth Rogers,
Stefan Géartner,
Hans-Jorg
Steffe

Stan Biihne

Stefan Sturm

https://www.ireb.org/

2.3.0 October1,2025 Learning objectives updated and Hans-Joérg
complemented. Steffe

Short description of the chapters
rewritten

Added illustrations to the chapters

:P“E RE@Agile | Syllabus | © IREB 7 1 37

Content

70 = o 8
1 What is RE@AGIle (L2 «'uvvneneee et e e e 10
2 A clean project start (L3) ...t iinnnnnnnn 12
2.1 Vision and goals (L8] ... iiiii ittt i iie e intennneannennnens 12
2.2 Specifying the system boundary (L3)cciiiiiiiiiiiiinnennnn. 13
2.3 Stakeholder identification and management (L3)ccov.... 13

2.4 Dependencies between visions/goals, stakeholders and the system

boundary (L8] .. v ittt it ettt st tee ettt e 14

3 Handling functional requirements (CL4) 15
3.1 Different levels of requirements granularityo, 15
3.2 Communicating and documenting on different levels 16
3.3 Working with user stories and backlog items 17
3.4 Splitting and grouping techniquesciviiiiiiii ittt nnns 18
3.5 Knowing when t0 Stop......iiiiiiii it ittt st e 19
3.6 Project and product documentation of requirements 19

4 Handling quality requirements and constraints (L3)...... 21

4.1 Understanding the importance of quality requirements and constraints

0 P 21

4.2 Adding precision to quality requirements (L2)ccoiuvnnn 21
4.3 Quality requirements and the backlog (L3) 22
4.4 Making constraints explicit (L2)cviiiiiiii ittt ennnennns 23

5 Prioritizing and estimating requirements (L3)........... 25
5.1 Determination of business valuecciiiiiiiiiiiiiniiennnn 25

:P“E RE@Agile | Syllabus | © IREB 8 | 37

5.2 Business value, risks, and dependencies (L3)oua... 26

5.3 Expressing priorities and ordering the backlog 26
5.4 Estimating backlog items (L3)iiiiiiiiiii ittt i iiinneeeennn 27
5.5 Choosing a development strategy (L2)ccviiiiiiiiinnnnnennnnn 29
6 Scaling RE@Agile (L2) ... v v ittt it iiee et i ennnnn 30
6.1 Scaling requirements and teams (L2)coitiiriiiiierrnnnnnnnns 31

6.2 Criteria for structuring requirements and teams in the large (L2) . 31

6.3 Roadmaps and large scale planning (L2), 32
6.4 Product validation CL2) ... v vttt ittt ittt et tanter st annarsannns 33
7 Definitions of terms, glossaryciiiiiiiinn.n. 35
S T =T = A=Y 2 o= 36

:P“E RE@Agile | Syllabus | © IREB 9 | 37

1 What is RE@Agile (L2)

Duration: 45 minutes

Terms: Stakeholder, Product Owner, Cooperative, Iterative, Incremental

Educational objectives

EO 1.1 Know the definition of RE@Agile (L1)

EO1.2 Understand the goals of RE@Agile (L2)

EO13 Understand that the responsibility for good requirements is with the product
owner (L2)

Content

Based on their respective histories, RE and agile approaches are often considered
separately rather than together. This often leads to the misunderstanding that there are two
ways of RE: classical RE and agile RE. The authors believe that there is only good or bad RE -
in a non-agile or agile world. Therefore, we call the approach RE@Agile.

Agile and RE are two disciplines with different origins and distinct goals that can
nevertheless learn a lot from each other. In the RE@Agile Primer [Prim2017] we concluded:
"The most important value is shared by RE and agile, and that is to make the user of the
product happy because the solution fits their needs or cures their greatest pains."

RE@AGgile is a cooperative, iterative and incremental approach with four goals:

1. Knowing the relevant requirements at an appropriate level of detail (at any time
during system development).

2. Achieving sufficient agreement about the requirements among the relevant
stakeholders.

3. Capturing (and documenting) the requirements according to the constraints of the
organization.

4. Performing all requirements-related activities according to the principles of the Agile
Manifesto.

RE@Agile

Cooperative Incremental
202,
a »

Figure 1: Cooperative, iterative and incremental approach

:F“E RE@Agile | Syllabus | © IREB 10 | 37

In agile approaches, different roles provide requirements for the desired system. Regardless
of who delivers these requirements, who structures them, and who details them, the person
with the role/responsibility of product owner remains responsible for RE.

:I'“E RE@Agile | Syllabus | © IREB 11 | 37

2 A clean project start (L3)

Duration: 120 minutes + 60 minutes exercise
Terms: Vision, Goal, Stakeholder, System boundary, Context diagram, Use case diagram

Content
Even in agile approaches some important prerequisites have to be established before
successful iterative and incremental system development work can start.

= Definition of the vision and/or goals of the system
= |dentification of the currently known scope of the system and the system boundary
= |dentification of relevant stakeholders and other important requirements sources

Currently known system scope

and system limit

Iteration Iteration

</
/ / /

vision and goals

Relevant stakeholders and

sources of requirements

Figure 2: A clean project start

2.1 Vision and goals (L3)

Educational objectives
EO 211 Apply the specification of goals and visions (L3)

Content

The system vision or product vision describes the overall goal that shall be achieved with the
system/product. The vision is of utmost importance for every development activity. It
defines the cornerstone and serves as an overall direction for all development activities.
Every requirement should support achieving the system vision.

Alternative approaches to the formulation of goals or visions are:

= SMART [Dora1981]

* PAM [Robe2003]

* Product Vision Box [High2001]

*= News from the future [HeHe2011]

:F“E RE@Agile | Syllabus | © IREB 12 | 37

= Vision Boards
= Canvas Techniques

2.2 Specifying the system boundary (L3)

Educational objectives
EOQC 2.21 Apply the specification of the system boundary (L3)

Content
A shared and common understanding of the scope and the context of the systemis a
prerequisite for an effective and efficient development effort [Glin2024].

The scope and the system boundary can be documented and clarified with several
techniques, such as:

= Contextdiagrams
»= Natural language

= Use case diagrams
= Story maps

2.3 Stakeholder identification and management (L3)

Educational objectives
EO2.3.1 Mastering and using stakeholder identification and management (L3)

Content

Similar to traditional approaches, the most important stakeholders must also be identified at
the beginning of the agile process so that a framework is set for the requirements elicitation.
In agility, however, the stakeholders can and will change constantly. It is therefore essential
that the identification and definition of stakeholders is itself understood as a cooperative,
incremental and, above all, iterative process (see also chapter 1).

Failing to identify and involve an important stakeholder in the development process can
have a major impact. If the requirements of such a stakeholder are identified too late (or not
at all), this may result in costly changes or even a useless system [PoRu2021].

The Onion Model from lan Alexander [Alex2005] is a simple tool for stakeholder
identification and classification. The model consists of three types of stakeholders (onion
layers) that can be systematically searched for stakeholders:

= Stakeholders of the system
= Stakeholders of the surrounding context
= Stakeholders of the wider environment

As a rule of thumb, the identification of stakeholders should rely on a broad range of sources.

Depending on the system and the domain, existing documentation, neighboring systems
with interfaces to the developed system, legacy systems or even competitor systems may
also be important sources (in addition to stakeholders) of requirements.

:F“E RE@Agile | Syllabus | © IREB 13 | 37

2.4 Dependencies between visions/goals, stakeholders and the
system boundary (L3)

Educational objectives

EO 241 Apply the dynamic change of vision and goals, stakeholders and system scope
(L3)

Content

The definitions of vision and goals as well as stakeholders and system boundaries are here
interdependent [PoRu2021]:

= Relevant stakeholders formulate the vision and the goals. Therefore, the
identification of a new relevant stakeholder may have an impact on the vision and
goals.

» Vision and goals can be used to guide the identification of new stakeholders by
asking: Which stakeholder may be interested in achieving the vision and goals or is
affected by achieving them?

= Vision and goals can be used to define an initial scope by asking: Which elements are
necessary to achieve the vision and goals?

» Changing the system boundary (and thus the scope) may have an impact on the
vision and goals. If an aspect is removed from the scope, it has to be verified that the
system still has sufficient means to achieve the vision and goals.

= Stakeholders define the system boundary. Therefore, the identification of a new,
relevant stakeholder may have an impact on the scope.

= A change of the scope (e.g., to fulfill a goal) requires agreement from the relevant
stakeholders.

These interdependencies should be used to balance all three elements (vision and goals,
stakeholders, scope) to examine the impact of changing one of the three elements on the
other.

Because of these dependencies between vision and goals, stakeholders, and scope we
recommend treating all these elements together and in a coherent way.

:F“E RE@Agile | Syllabus | © IREB 14 | 37

3 Handling functional requirements (L4)

Duration: 195 minutes + 120 minutes exercise

Terms: Functional requirement, Epic, Feature, Story, User story, Definition of Ready
(DoR), INVEST, Levels of granularity

Content
This core EU takes a static view on functional requirements, i.e. structuring a large set of
requirements into abstraction hierarchies.

As soon as the idea has been accepted that requirements do exist on different levels of
granularity, some questions naturally arise:

= How do we deal with multiple levels of granularity?

= Which criteria can and should be applied to split big, abstract topics into smaller
chunks?

» [sit sometimes necessary to group many small requirements into larger chunks so
that we have a "bigger picture" for orientation?

= How precise do we have to be before the developers can begin with the
implementation?

= Isit necessary or advisable to keep multiple levels of requirements, or can we throw
away abstract statements as soon as we have more concrete requirements?

= Do we prefer to structure the backlog according to functional relations/processes, or
according to other relations such as technical contexts?

= Do we have to capture all of this in writing or can we simply talk about it?

3.1 Different levels of requirements granularity

Educational objectives

EO 311 Know the existence of functional requirements at different levels of
granularity (L1)

Content

Stakeholders usually communicate requirements on different levels of granularity.
Sometimes they ask for big chunks of functionality, sometimes they ask for minor details to
be added or changed.

Epics (sometimes also called themes), or large stories (representing potentially complex
business processes) are a good way to get a big picture of all currently known requirements
in the backlog, i.e., an overview of all the things that stakeholders expect from a system or a
product. Epics are decomposed into finer-grained elements, typically features and stories.
Stories provide the finer level of granularity and may communicate requirements from
different perspectives, e.g., user perspective, technical perspective.

:F“E RE@Agile | Syllabus | © IREB 15 | 37

Vision / Goal 0)) 0)

coarse granular requirements (epics) 0 0) ° 0) () 0

Medium granular requirements

(features) O O 0 O O 0) oNe 0)

fine granular requirements (stories) O OO O O OO0

Figure 3: Requirements granularity

3.2 Communicating and documenting on different levels

Educational objectives

EO 3.21 Analyze and apply the decomposition of requirements at the highest level (L4)

EO 3.22 Analyze and apply different decomposition strategies in the large (L4)

EO 3.2.3 Analyze and apply the identification, documentation, and communication of
functional requirements on different levels of granularity (L4)

Content

Based on the principle of "divide and conquer", we need to decompose a large system or
product into smaller parts.

.ﬁ/.

Figure 4: System decomposition into smaller parts

There are different approaches to achieving this goal (e.g., division into logical functions,
division according to organizational aspects, division according to hardware, division
according to data, ...). In doing so, we look at the approach to breaking down requirements
into externally initiated, value-creating processes.

In addition to decomposing the requirements into smaller parts, we also have to take care of
communicating and documenting the functional requirements. The basic choice is between

:P“E RE@Agile | Syllabus | © IREB 16 | 37

drawing (e.g., with models) and writing (e.g., in natural language). Above all, it is up to the
whole team to decide which format is preferred. For example, the overview could be
provided using a use case diagram, while the process steps of the use cases are described in
simple words (e.g., as a user story).

3.3 Working with user stories and backlog items

Educational objectives

EO 3.31 Apply the idea of User Centered Thinking on requirements with User Stories (L3)

EO 3.3.2 Create requirements based on the user story idea and using the user story
template (L3)

EO 3.3.3 Apply the INVEST criteria when writing requirements (L3)

Content

User stories have become very important in the agile environment because they point to the
importance of structuring and developing requirements and the resulting products in a user-
centered way. In other words, putting the user first. This user perspective is important
because we primarily develop in an agile way in order to receive regular feedback from
users.

Itis important to remark that in the agile environment, the term "user story" is often used
with three different purposes:

= Asauser-oriented way to discuss and formulate requirements.

= Asthe lowest (most detailed) level of requirements structuring (Epics -> Features ->
(User-) Stories). In fact, the term "user story" is often used instead of "story" in the
requirements structure.

= Asatemplate to describe requirements at different hierarchy levels from a user's
perspective.

As a formal structure (template)

(Possible at all hierarchy levels)

"As a <role/person> | want
<goal/desire> so that <benefit>,

Figure 5: User story template

:F“E RE@Agile | Syllabus | © IREB 17 | 37

In this syllabus, in order to mitigate this ambiguity, we use the term "story" for the finer-
grained elements in the requirements structure; therefore, a "user story" is a particular type
of story, i.e. a user-centered story. When we refer to the template presented in Fig. 5, we will
use the term "user story template". Please note that the user story template can be used to
describe not only stories but also epics and features if deemed appropriate.

In general, it should be noted that user stories are not complete requirements in themselves;
they are more of a communication promise. In order to create complete requirements and
corresponding backlog items, further detailing (documented and/or in discussion) will have
to take place.

When introducing user stories [Cohn2010], Bill Wake [Wake2003] defined that user stories
should comply with the INVEST principles (Independent, Negotiable, Valuable, Estimated,
Small, Testable).

Backlog items are often written on index cards or sticky notes in addition to IT tools (e.g., Jira
MS-Devops) and arranged on walls or tables to facilitate planning and discussion. Using the
3C model (card, conversation, confirmation), these backlog items can then be discussed in
more detail and supplemented with other requirement artifacts (e.g., models,
documentation).

3.4 Splitting and grouping techniques

Educational objectives

EO 3.41 Analyze and apply splitting techniques for coarse-grained functional
requirements (L4)

EO 3.4.2 Analyze and apply grouping and abstraction of detailed functional requirements
into coarser requirements (L4)

Content

In order to generate backlog items that are small enough to fit within a single iteration, larger
backlog items may be split into more fine-grained ones (stories). A number of authors have
suggested patterns that can be applied for this purpose, ranging from reducing the feature
list to narrowing down the business variations or input channels [Leffl2010]. Note that even
fine—-grained stories should be defined in such a way that they deliver some value for at least
one stakeholder.

Smaller backlog items can be grouped into larger blocks or processes (e.g., use cases) for
clarity and displayed graphically using a story map. This helps to maintain an overview of the
requirements and at the same time to present the medium-term strategy by assigning the
requirements to sprints and releases.

:F“E RE@Agile | Syllabus | © IREB 18 | 37

- - } Epics

— Features

INVEST
[Stories

Figure 6: Splitting and grouping

3.5 Knowing when to stop

Educational objectives

EO 3.5.1 Apply the refinement of requirements (L4)
EO 3.5.2 Apply the quality assurance of stories in an agile context (L4)

Content
The product owner is responsible for continuing discussions with developers until both sides
have a common understanding of the requirements Meye2014].

For this level of common understanding, the Definition of Ready (DoR) is defined which can
be used for the quality assurance of backlog items to ensure that a common understanding
and a sufficient level of detail has been achieved.

3.6 Project and product documentation of requirements

Educational objectives

EO 3.6.1 Understand how to distinguish between project and product
information/documentation (L2)
EO 3.6.2 Know methods and techniques to preserve information for future use (L1)

Content

A product backlog can be thought of as a replacement for the requirements document of a
traditional project. However, it is important to remember that the written part of a backlog
item (e.g., using the user story template: "As a user, | want...") is incomplete until discussions
about that backlog item have taken place.

:P“E RE@Agile | Syllabus | © IREB 19 | 37

It is often best to think of the written part as a reference to a more precise representation of
this requirement. Backlog items (Epics, Features, Stories, ...) could point to a diagram
depicting a workflow, a spreadsheet illustrating how to perform a calculation, or any other
artifact the product owner or team desires.

In addition to the product backlog, there may be different reasons for a detailed
requirements documentation, such as for communication purposes, for reflection purposes,
for legal purposes, for archiving purposes.

Defining an adequate level of documentation depends on numerous factors, such as the
scope of the project, the number of stakeholders involved, legal constraints and/or the
safety-critical aspects of the project. Based on these factors, teams in an agile environment
try to avoid an excess of documentation and find a minimum denominator of useful
documentation.

Working with a "living" product backlog is an efficient way of dealing with documentation,
but it is not always sufficient. Structured documentation of all requirements implemented in
a product that is up to date is not only legally mandatory in some projects, but it also serves
as an ideal starting point for identifying change requests more quickly based on the existing
documentation.

:P“E RE@Agile | Syllabus | © IREB 20 | 37

4 Handling quality requirements and
constraints (L3)

Duration: 90 minutes + 30 minutes exercise

Terms: Quality requirements, Constraints, Quality tree, Definition of Done (DoD),
Acceptance criteria

Content

This EU takes a look at quality requirements and constraints in agile projects. Even though
the term "non-functional requirements" is still often used in practice as an umbrella term, we
use the more concrete and precise categories "quality requirements" and "constraints"
according to [Glin2024].

4.1 Understanding the importance of quality requirements and
constraints (L2)

Educational objectives

EO 411 Understand the importance of quality requirements in an agile context (L2)
EO4.1.2 Understand categorization schemes for quality requirements and constraints (L2)

Content

Many agile methods concentrate on functional requirements only and do not put enough
emphasis on qualities and constraints Meye20141].

Key constraints and qualities envisaged for the system should be made explicit early in the
lifecycle of a product, since they determine key architectural choices (infrastructure,
software architecture and software design). Ignoring them or learning too late in the project
may endanger the whole development effort. Other qualities can be captured iteratively, just
in time, as with functional requirements Meye2014].

Categorization schemata for quality requirements and constraints (e.g., [RoR02013],
[1ISO25010]) can be used as checklists so as not to forget important categories.

4.2 Adding precision to quality requirements (L2)

Educational objectives

EO 4.21 Understand the detailing or decomposing of quality requirements and constraints
(L2)

EO 4.22 Understand the derivation of functional requirements from quality requirements
(L2)

EO 4.2.3 Understand the specification of acceptance criteria for quality requirements (L2)

EO 4.2.4 Understand the added value of quality trees (L2)

Content

Initially quality requirements are often deliberately vague. They have to be captured in their
vague format as a starting point. Vague quality requirements and constraints can be refined

:F“E RE@Agile | Syllabus | © IREB 21 | 37

into more precise requirements. Sometimes concrete functional requirements will be derived
from them.

-

— \. Constraints

Product requirements

. -~

Figure 7: Decomposing quality requirements and constraints

Decomposing (or detailing) a quality requirement means specifying quality requirements on
a lower level of detail, e.g. by using the generalizations in the categorization schemes like
"usability" and making them more precise by finding requirements for "ease of use" and
"ease of learning".

Deriving means that quality requirements can be achieved by defining functional
requirements, i.e. suggesting functions that achieve the desired quality or constraints. An
example for refining a security requirement is introducing a role concept and passwords.

Quality trees ([BOSS2022], [CleA2001]) are also a proven way to structure quality
requirements.

Acceptance criteria must also be defined for quality requirements in order to make them
testable at a later stage, just like other types of requirements [PoRu2021]. The type of
acceptance criteria used will depend on the category of the quality.

4.3 Quality requirements and the backlog (L3)

Educational objectives

EO 4.31 Apply attaching of quality requirements to functional requirements (L3)

EOQ 4.3.2 Apply creating separate backlog items for quality requirements (L3)

EO 4.3.3 Understand quality requirements as part of the DoD (L2)

EO 4.3.4 Understand the difference between quality requirements and acceptance
criteria (K2)

:P“E RE@Agile | Syllabus | © IREB 22 | 37

Content

Generalized quality requirements need to be linked to more specific functional requirements
[PoRu2021], e.g., some quantifiable throughput attached to a story, or specific security
features attached to an epic.

Other qualities, e.g., scalability, maintainability, or robustness should be made known to
development and checked in each iteration. A common way of achieving that is including
them in the Definition of Done. This is often supported by automated testing [Leffl2010].

Another approach is to have a separate recording (away from the product backlog) of such
qualities to keep them visible for the teams e.g., as a common list or in the form of checklists.
These requirements are all of equal importance (as they all have to be fulfilled) [Leffl2010].

It is also good practice to make the relationships of functional vs. affected quality
requirements visible by setting up a matrix on a wall, indicating the "affected by" relationship
with marks in the respective cells.

When structuring a backlog, product owners are often faced with the question of whether a
recognized/raised quality requirement is really a quality requirement, an acceptance criteria,
or perhaps also an acceptance criteria for a quality requirement.

= Quality requirements refer to quality concerns that are not covered by functional
requirements. Such as performance, availability, maintainability, security or reliability.

= Acceptance criteria are criteria that a requirement (this can be a functional
requirement or a quality requirement) must fulfill in order to be accepted by the
stakeholders.

We can see that both functional requirements and quality requirements can and should have
acceptance criteria.

4.4 Making constraints explicit (L2)

Educational objectives

EO 4.41 Understand different kinds of constraints in an agile context (L2)
EO 4.42 Know how to characterize constraints (L1)

Content

Constraints are an important type of requirements that limit the design choices of the
developers [Glin2024]. Constraints can be categorized as either product constraints or
process constraints. Product constraints include the required use of technologies, the reuse
of existing components, make or buy decisions, or resources in the form of material,
knowledge and competencies. The process constraints, on the other hand, are defined by
organizational or development processes. These include organizational policies and
regulations, financial limits, norms and standards, compliance regulations and audits, legal
and governmental constraints.

Itis important to make such constraints explicit so that everyone in the team is aware of
them. The most limiting ones should be known early in the project. Others should be captured
as soon as they are discovered. In general, constraints usually affect several functional

:F“E RE@Agile | Syllabus | © IREB 23 | 37

requirements. This raises the question of how constraints (as well as quality requirements)
should be documented. We have already explained the possibilities for this in chapter 4.3.
The same applies to the constraints: at the very least, a check should be included in the
Definition of Done to ensure that they have been met.

Please note that you do not necessarily have to write all constraints as a backlog item. It may
be sufficient to inform the team that e.g., C# and ORACLE are non-negotiable constraints.

Such constraints are normally applicable to a wider range of projects. Once they have been
recorded, they can easily be reused in other projects or products.

:P“E RE@Agile | Syllabus | © IREB 24 | 37

5 Prioritizing and estimating requirements

CL3)

Duration: 120 minutes + 90 minutes exercise

Terms: Business value, MVP, MMP, Planning poker, Cone of uncertainty, Velocity, Sizing,
Reference Stories, T-shirt sizes, Fibonacci sequence

Content

Even in a perfect agile world forecasts are needed to determine how much work can be
"done" within a previously specified iteration (timebox). Additionally, development
organizations that exceed one team usually need forecasts in order to prioritize and plan
work properly.

cumulative
value

iterations

Figure 8: Growing business value

5.1 Determination of business value

Educational objectives

EO 511 Understand the determination of business value (L2)

EO5.1.2 Understand how to use business value to order backlog items (L2)

EO51.3 Apply alternative methods of calculating the business value (L3)

EO5.1.4 Understand how to align business value measurement to strategic goals of the
organization (L2)

Content

Agile approaches aim to maximize the overall business value and to permanently optimize
the overall business value creation process [Leffl2010]. In a product backlog, all
requirements (whether coarse or fine) should be ordered primarily by the value they provide
to the organization. A prerequisite to doing so is an agreed definition of what business value
for this product/company is.

Business value is not only defined by profit: alternative calculations include Return on
Investment, Payback Period, Net Present Value, Weighted Shortest Job First (WSJF), Cost
of Delay and Balanced Scorecard. Market value, time to market and reducing potential risks

:P“E RE@Agile | Syllabus | © IREB 25 | 37

all potentially represent types of business value, as do operational and organizational
excellence [Rein2009].

Indeed, the definition of business value may be different in every organization, every project,
and from the perspective of different stakeholders. Professionals should understand how to
align business value measurement to the strategic goals of the organization, and be able to
adapt this alignment as these goals change.

5.2 Business value, risks, and dependencies (L3)

Educational objectives

EO 5.21 Understand the dependencies between potential business value and related risks
(L2)

Content

Very often potential business value and risks are interdependent. Focusing on a specific
business value might raise specific risks, changing the focus of the business value might
change the risks as well [Rein2009].

In each case the ordering of requirements should be adjusted in line with the selected
strategy, taking into account dependencies among the requirements.

5.3 Expressing priorities and ordering the backlog

Educational objectives

EO5.31 Apply the prioritization of backlogs (L3)

EO5.3.2 Apply different basic prioritization strategies (L3)

EO 5.3.3 Apply the determination of dependencies between requirements (L3)
EO5.3.4 Understand the sequence of backlog items based on their dependencies (L2)

Content

Once you have determined what value means to you, you have to express these priorities
and order the backlog according to the priorities given to the backlog items. There are many
different methods to assign value to backlog items. Some of them very simple, others are
highly complex. Examples of prioritization strategies include:

= MoSCoW

»= High/Medium/Low

» Based onarange of numbers that express the business value
= Based on valuing the business using multiple criteria

:F“E RE@Agile | Syllabus | © IREB 26 | 37

Backlog Items Turnover Minimizing Increasing Overall
in Q2 technical risk usability result
2

Weight =5 Value Weight=4 Risk value Weight= Usability Value
Requirement 1 3 15 0 0 0 0 15
Requirement 2 0 0 3 12 1 2 14
Requirement 3 4 20 2 8 2 4 32
Requirement 4 2 10 2 8 3 6 24
Requirement 5 0 0 2 8 5 10 18

Figure 9: Priorities and ordering the backlog

When prioritizing the backlog items, it should generally be considered that the closer the
time of the planned implementation of a backlog item comes, the clearer the priorities of the
selected items should be. A prioritization with the criteria "high", "medium", "low" often
results in a far too large number of backlog items receiving the value "high". For example, if
30% of all backlog items are assigned a high priority, the result is that developers do not
know what is most important to the product owner. It also indicates that the product owner
does not have a clear strategy for short to medium-term implementation. The goal of
prioritization should always be to make a clear statement about what stakeholders can
expect as the value of the product in the near future.

5.4 Estimating backlog items (L3)

Educational objectives

EO5.41 Apply forecasts and estimates (L3)

EO 5.4.2 Understand how to derive a mid-term forecast (L2)

EO 5.4.3 Understand the advantage of relative, categorizing and group estimations (L2)
EO 5.4.4 Understand estimation techniques (L2)

Content

Initial project estimates are often imprecise. They become more and more precise as the
activity is iterated (a principle known as the Cone of Uncertainty). By analyzing what has
been delivered in previous iterations, the velocity of the team can be calculated. This allows
the capacity for future iterations to be better estimated.

For better mid-term estimates, large requirements such as epics are broken down into
features. This allows estimates to be made at feature level and then added up to the epic.
Although these estimates are still not very precise, but helpful for the epic estimation. In
addition, they serve as a kind of test of knowledge about the Epic (assumptions, etc.).

:P“E RE@Agile | Syllabus | © IREB 27 | 37

Agile methods define rules that help to do better and more accurate estimates:

= Everyone involved in the estimation must have the same understanding of the work
that needs to be "done".

= Estimations must be performed by those doing the work, the cross-functional team
(Developers in Scrum). This helps to bring all involved people on the same level of
knowledge by exchanging knowledge and assumptions about the work to be done.

= Estimations should be done relatively / relative to work already done (Estimation by
analogy), since those estimates are more likely to be accurate than absolute
estimates.

= Estimates should be done in an artificial unit representing effort, complexity and risk
in one.

Several techniques support the relative estimate. The best known of these are planning
poker [Cohn2006] and Magic Stimulation.

:P“E RE@Agile | Syllabus | © IREB 28 | 37

5.5 Choosing a development strategy (L2)

Educational objectives

EO 5.5.1 Understand the concept of MVP (minimum viable product) (L2)
EO 5.5.2 Understand the concept of MMP (minimum marketable product) (L2)

Content

Different strategies can be applied when selecting what should be picked for early releases,
based on known value, risk and effort needed to develop a backlog item. Two concepts are
typical for agile development: developing a minimum viable product (MVP) and developing a
minimum marketable product (MMP).

A minimum viable product is the version of a new product that allows a team to collect the
maximum amount of validated learning about customers with the least effort. The MVP is
the central idea of the Lean Startup methodology developed by Eric Ries, which is based on
the Build-Measure-Learn cycle. The MVP is not necessarily a deployable software product.

The MMP describes the product with the smallest possible feature set that meets the needs
of the first users (innovators and early adopters) and can therefore be marketed.

Product

BUILD L increment
(e.g. MVP)

x \
Idea
- MEASURE
L
LEARN

\—/ |:||:||:|D Collected feedback

Figure 10: The “Build-Measure-Learn” cycle of lean development

:P“E RE@Agile | Syllabus | © IREB 29 | 37

http://startuplessonslearned.blogspot.com/2009/04/validated-learning-about-customers.html

6 Scaling RE@Agile (L2)

Duration: 105 minutes

Terms: Scaling frameworks, Scaling Requirements and Teams, Structuring Requirements
and Teams in the Large, Roadmaps and Large Scale Planning, Product Validation

Content
RE is easier for products that are small enough to be handled by a single team at one
location.

In this educational unit we discuss why product development must sometimes be scaled and
why products have to be developed by more than one team, whether at the same location or
distributed geographically. When scaling, the product owner of the overall product (as the
role responsible for requirements management) is likely to be more challenged with
management aspects than with requirements aspects. We will discuss that the two factors
time to market and complexity (either functional complexity or challenging quality
requirements) justify and drive the scaling process. But organizational and technical
constraints also influence the way scaling takes place.

The following questions are important:

= What does scaling mean and how does it affect requirements and teams?
= How do we (re-)organize the requirements and the teams in the large?

= How are releases and roadmaps defined and used in long-term planning?
= How are requirements validated in scaled environments?

Time to market is critical;
therefore, | need more
teams to work in parallel e

— Qg —

TTime to market

The functionality is huge.
One team would take

My developers are ‘ too long to create it.
geographically distributed.) \'jh—"\,.,_i_,.& i 4
| have to structure the > O —
project under these .
e Product complexity

— ya -
S f——
"-f—f"'\.\ -

)
"

Distribution and skill constraints

Figure 11: Reasons to scale

:F“E RE@Agile | Syllabus | © IREB 30 | 37

6.1 Scaling requirements and teams (L2)

Educational objectives

EO 611 Know common examples of scaling frameworks (L1)
EO 6.1.2 Understand the challenges and mechanism for scaling requirements in the agile
context (L2)

Content
We use the term "scaling" to describe a change in size, either of the system or the product, or
of the number of people involved.

Since around 2010, a number of different agile scaling frameworks have been developed to
address these issues. Among them are Nexus [Nexu2021], SAFe [SAFe2021a] [SAFe2021b],
LeSS [LeSS], Scrum@Scale [S@SG2021], BOSSA Nova [BOSS2022], Scrum of Scrums
[KnlvS2012], and Spotify [Spot2012], though more exist. Scaling frameworks vary in their
maturity level, the number of good practices, guidelines and rules, and the degree of
adaptability to the specific needs of an organization.

When you scale, two things will always be true: you will be forced to add a hierarchy to the
requirements and a hierarchy to the organization. Coarse-grained requirements are needed
when discussing the product as a whole; fine-grained requirements will be needed in the
teams implementing some aspect of the product. And the teams themselves will need to
organize their cooperation to function successfully within a larger team.

6.2 Criteria for structuring requirements and teams in the
large (L2)

Educational objectives

EO6.21 Know the challenges to organize a backlog and to communicate about
requirements within a network of teams (L1)

EO6.2.2 Understand requirements splitting in different (project) settings of the agile
context (L2)

Content

In large-scale product development mostly multiple teams have to work together on the
same product. In practice, each team develops a specific part of the product that must be
integrated with other parts into the overall product in order to create a working solution. Only
the integrated product has value for the stakeholders.

When scaling product development to multiple teams, it is not sufficient for all product
owners to simply meet and somehow discuss which teams should develop which part of the
product, and then to hope for the best! Sophisticated structures and practices are needed to
support team collaboration, manage requirements changes and enable rapid product
delivery. Otherwise, developers may waste effort coordinating with teams that are not
relevant for their work.

:F“E RE@Agile | Syllabus | © IREB 31 | 37

From a requirements perspective we have to close the loop: from the initial (business-)
requirement demanded by stakeholders, through the splitting of complex requirements into
smaller pieces manageable by developers, and then onto ensuring that the assembled
results combine to form a solution that can be released to the business.

In order to both work on requirements collaboratively, and to take reasonable decisions
autonomously, teams need a general understanding of the requirements of the other teams
with whom they have to collaborate, without, though, becoming overwhelmed with all the
details. Product owners should therefore find an appropriate level of detail, sufficient for
teams to understand the impact of their decisions on other teams.

To deliver shippable product increments with minimal dependencies on other teams, teams
in an agile environment should work on loosely-coupled, end-to-end features. In our context,
the term ‘end-to-end feature’ refers to a set of coherent functions performing a specific
task that provides business value to stakeholders. Use Cases are an approach to structuring
requirements, not always typically associated with Agile, but nevertheless recommended by
a number of authors (for example [Jaco2011], Cockburn, [Leffl2010]).

Unfortunately, in many cases it is not that easy to decompose requirements based around
loosely-coupled units of end-to-end functionality. Due to architectural design (for example
technology, infrastructure, system components, common platform, architectural layers
such as front- and backend) as well as organizational considerations (specialist skills, team
location, sub-contractors), units of functionality may overlap. This means that different
teams in an agile environment must work together to implement specific features and their
respective product owners need to collaborate more closely on requirements. Alternatively,
a dedicated team can be established to specifically work on the overlap, and to collaborate
with each of the original teams focused on a unit of functionality.

6.3 Roadmaps and large scale planning (L2)

Educational objectives

EO6.31 Know the difference between a roadmap and a backlog in an agile context (L1)
EO 6.3.2 Understand the creation and the management of a roadmap in the agile context
(L2)

Content

In large-scale product development, product owners manage requirements in the product-
focused backlog. In contrast to the backlog, a roadmap is used for planning product
development incrementally. A roadmap is a prediction of how the product will grow
[Pich2016]. Roadmaps do not change the content of backlog items but arrange them onto a
timeline. It answers the question when we can roughly expect which features.

A roadmap is a useful means to communicate (strategic) goals and decisions to the
developers and other stakeholders. It breaks down a long-term goal into manageable
iterations, represents dependencies among the teams and provides direction and
transparency to the stakeholders.

:F“E RE@Agile | Syllabus | © IREB 32 | 37

A roadmap shows strategic goals, milestones and coarse-grained requirements. Important
milestones may be either internal or determined by external events such as a trade show or
the introduction of new regulation to the market. The representation of a roadmap depends
on its purpose, target group and planning horizon.

) y- . ~N w
Product- Release 1 Release 2 Release 3 Release 4
Backl V]
7&/ prioritized, A
~// estimated .
///\ Planning —
—/ /) / | Time Cost

v Release Roadmap

Features/Functions

Development Capacity N N cone of uncertainty

QOrganization

Figure 12: Roadmaps and large scale planning

To develop a long-term product roadmap, a product owner must first define a product
vision and strategy. Afterwards, product owners must then elicit coarse-grained
requirements by engaging with the necessary stakeholders. There is no need to invest time
on detailed requirements at this point. Although requirements are subject to a high level of
uncertainty at this stage, the product roadmap as a rough, first-cut iteration plan is good
enough to support planning and synchronization.

6.4 Product validation (L2)

Educational objectives

EO6.41 Understand concrete methods to validate product requirements in the agile
context (L2)

Content

A key idea of agile development is to develop a small slice of the product, generate
feedback by involving stakeholders and adapt the product development according to the
findings and insights gained. Thus, following the principle of the Build-Measure-Learn cycle
[Ries2011], product validation becomes an important step to gain rapid feedback. Each time
a new product increment is released, product owners use that product increment to verify its
business value and to examine whether the product requirements had been correctly
understood.

Validation at product level (e.g., sprint review in Scrum) is an important method in large-scale
product development, as it ensures that the product owners together share full
accountability from business requirements to product integration. It is the whole product
that has value for the stakeholders, not only small product slices.

:F“E RE@Agile | Syllabus | © IREB 33 | 37

Another approach for product validation in large-scale product development is one that is
based on data analysis [MaeA2016]. The integrated product increment is delivered to users
and, based on their behavior, measurements are made as to whether the product features
have a positive, neutral or negative impact.

:P“E RE@Agile | Syllabus | © IREB 34 | 37

/7 Definitions of terms, glossary

For the definitions of terms, we refer the reader to the IREB CPRE Requirements Engineering

glossary [Glin2024], which is not only a comprehensive glossary of Requirements
Engineering terminology, but also defines many terms from the field of agility. For specific
agility terms, the reader may consult the current Scrum Guide [ScSu2020].

:P“E RE@Agile | Syllabus | © IREB 35 | 37

8 References

[Alex2005] Alexander, I. F.: A Taxonomy of Stakeholders - Human Roles in System
Development. International Journal of Technology and Human Interaction, Vol
1,1, 2005, pages 23-59.

[BOSS2022] https://www.agilebossanova.com/#bossanova. Last visited March 2025.

[CleA2001] P.Clements et al.: Evaluating Software Architectures, SEI Series in Software
Engineering, 2001

[Cohn2010] Cohn, M.: User Storys fir die agile Software-Entwicklung mit Scrum, XP u.a.,
mitp, 2010

[Cohn2006] Cohn, M.: Agile Estimation and Planning, Addison Wesley, 2006

[Dora1981] Doran, G. T: There’s a S.M.A.R.T. way to write management’s goals and
objectives, Management Review. AMA FORUM. 70 (11): 35-36 1981.

[Glin2024] Glinz, M.: A Glossary of Requirements Engineering Terminology. Standard
Glossary for the Certified Professional for Requirements Engineering (CPRE)
Studies and Exam, Version 2.1.1, 2024. https://cpre.ireb.org/en/knowledge-
and-resources/downloads#cpre-glossary. Last visited March 2025.

[HeHe2011] Heath, C., Heath, D.: Switch: Verdnderungen wagen und dadurch gewinnen.
Crown Business, 2010

[High2001] Highsmith, J.: Design the Box. Agile Project Management E-Mail Advisor 2001,
http://www.joelonsoftware.com/articles/JimHighsmithonProductVisi.ntml. Last
visited March 2025.

[Hrus2017] https://b-agile.de/downloads/articles/story_splitting.pdf. Last visited March
2025.

[1ISO25010] ISO/IEC 25010:2023: Systems and software engineering - Systems and
Software Quality Requirements and Evaluation (SQuaRE) - System and
software quality models: https://www.iso.org/standard/78176.html. Last visited
March 2025.

[Jaco2011] https://www.ivarjacobson.com/publications/white-papers/use-case-ebook.
Last visited March 2025.

[Leffl2010] Leffingwell, D.: Agile Software Requirements - Lean Requirements Practices
for Teams, Programs, and the Enterprise. Addison Wesley, 2010.

[LeSS] Large-Scale Scrum: https://less.works. Last visited March 2025.

[MaeA2016] Maalej, W., Nayebi, M., Johann T., Ruhe, G.: Toward Data-Driven Requirements
Engineering. IEEE Software (Volume 33, Issue 1), 2016.

Meye2014] Meyer, B.: Agile! The Good, the Hype and the Ugly, Springer, 2014.

[Nexu2021] https://www.Scrum.org/resources/nexus—-guide. Last visited March 2025.

:F“E RE@Agile | Syllabus | © IREB 36 | 37

https://www.agilebossanova.com/#bossanova
https://www.amazon.de/s/ref=dp_byline_sr_book_1?ie=UTF8&text=Paul+Clements&search-alias=books-de-intl-us&field-author=Paul+Clements&sort=relevancerank
https://cpre.ireb.org/en/knowledge-and-resources/downloads#cpre-glossary
https://cpre.ireb.org/en/knowledge-and-resources/downloads#cpre-glossary
http://www.joelonsoftware.com/articles/JimHighsmithonProductVisi.html
https://b-agile.de/downloads/articles/story_splitting.pdf
https://www.iso.org/standard/78176.html
https://www.ivarjacobson.com/publications/white-papers/use-case-ebook
https://less.works/
https://www.scrum.org/resources/nexus-guide

[Pich2016] Pichler, R.: Strategize - Product Strategy and Product Roadmap Practices for
the Digital Age, Pichler Consulting 2016.

[PORu2021] Pohl, K., Rupp, C.: Basiswissen Requirements Engineering: Aus- und
Weiterbildung nach IREB-Standard zum Certified Professional for
Requirements Engineering Foundation Level, dpunkt.verlag, 5. Auflage, 2021.

[Prim2017] CPRE RE@Agile Primer https://cpre.ireb.org/en/downloads-and-
resources/downloads#cpre-agile-primer-syllabus-and-study-quide. Last
visited March 2025.

[Rein2009] Reinertsen, D.G.: The Principles of Product Development Flow - Second
Generation Lean Product Development. Celeritas Publishing, 2009.

[Ries2011] Ries, E.: The Lean Startup: How Today's Entrepreneurs Use Continuous
Innovation to Create Radically Successful Businesses, Crown Business, New
York, NY 2011.

[RoR02013] Robertson S. Robertson J.: Mastering the Requirements Process - Getting
Requirements Right, 3rd edition, Addison Wesley, 2013.

[Robe2003] Robertson, S.: Stakeholders, Goals, Scope: The Foundation for Requirements
and Business Models, 2003, https://www.volere.org/wp-
content/uploads/2018/12/StkGoalsScope.pdf. Last visited March 2025.

[SAFe2021a] https://www.scaledagileframework.com/roadmap/. Last visited March 2025.

[SAFe2021b] https://www.scaledagileframework.com/pi-planning/. Last visited March 2025.

[SAFe2021] https://www.scaledagileframework.com/safe-requirements-model/. Last
visited March 2025.

[S@SG2021] Sutherland, J. and Scrum, Inc: Scrum@Scale Guide:
https://www.Scrumatscale.com/Scrum-at-scale-quide/. Last visited March
2025.

[KnlvS2012] Kniberg, H.; Ivarsson, A.: Scaling Agile @ Spotify with Tribes, Sqads, Chapters &
Guilds. https://blog.crisp.se/wp-content/uploads/2012/11/SpotifyScaling.pdf.
Last visited March 2025.

[Spot2012] https://blog.crisp.se/wp-content/uploads/2012/11/SpotifyScaling.pdf. Last
visited March 2025.

[ScSu2020] Schwaber, K., Sutherland, J.: The Scrum Guide. 2020
https://scrumguides.org/docs/scrumguide/v2020/2020-Scrum-Guide-
US.pdf. Last visited March 2025.

[Wake2003] Wake, B: INVEST in Good Stories, and SMART Tasks, 2003,
https://xp123.com/articles/invest-in-good-stories—and-smart-tasks/. Last
visited March 2025.

:P“E RE@Agile | Syllabus | © IREB 37 | 37

https://cpre.ireb.org/en/downloads-and-resources/downloads#cpre-agile-primer-syllabus-and-study-guide
https://cpre.ireb.org/en/downloads-and-resources/downloads#cpre-agile-primer-syllabus-and-study-guide
https://www.volere.org/wp-content/uploads/2018/12/StkGoalsScope.pdf
https://www.volere.org/wp-content/uploads/2018/12/StkGoalsScope.pdf
https://www.scaledagileframework.com/roadmap/
https://www.scaledagileframework.com/pi-planning/
https://www.scaledagileframework.com/safe-requirements-model/
https://www.scrumatscale.com/scrum-at-scale-guide/
https://blog.crisp.se/wp-content/uploads/2012/11/SpotifyScaling.pdf
https://blog.crisp.se/wp-content/uploads/2012/11/SpotifyScaling.pdf
https://scrumguides.org/docs/scrumguide/v2020/2020-Scrum-Guide-US.pdf
https://scrumguides.org/docs/scrumguide/v2020/2020-Scrum-Guide-US.pdf
https://xp123.com/articles/invest-in-good-stories-and-smart-tasks/

